

Through Regd. AD

MIN / 2019 - 19019

Date: 22.01.2019

Τo,

Director

Ministry of Environment & Forests Regional Office, Western Region KendriyaParayavaranBhavan Link Road No. 3 E - 5 Ravishankar Nagar,

Bhopal – 462 016

Sub: - Six monthly compliance report of environmental clearance over 1143.41 hect. area in Sijahatta - Hinauti Limestone Mine of M/s Prism Cement Ltd.

Ref.:- Your letter No. J-11015/37/96-IA.II (M) dated 31.12.96.

Dear Sir,

This is reference to the abovewe are enclosing herewith the six monthly compliance report with necessary enclosures of the environmental clearance granted over 1143.41 Hect. Mining Lease areas of M/s Prism cement Limited Satna (M. P.)

We hope you will find the same in order.

Thanking you

Yours faithfully, For, Prism Johnson Limited

PRISM JOHNSONLIMITED

(FORMERLY PRISM CEMENT LIMITED) (Cement Division)

Mines Manager

PRISM

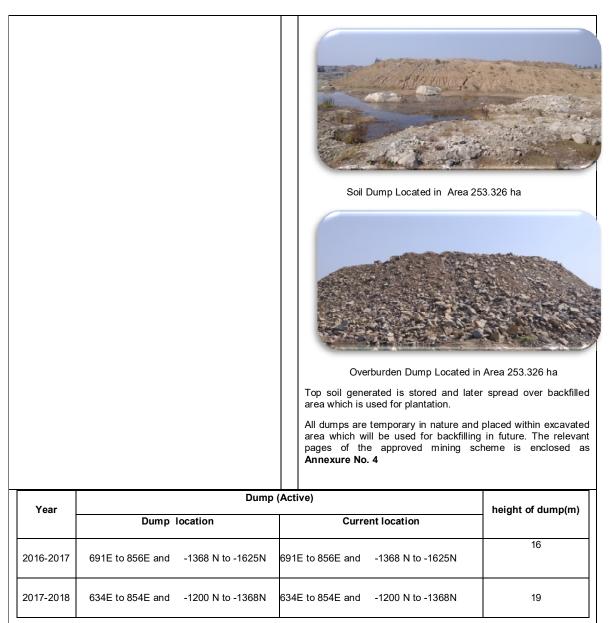
AMPIO

CIN: L26942TG1992PLC014033

For

Environmental Clearance over 1143.41 Ha area in Village -Sijahata -Hinoti Limestone Mine of M/S Prism Johnson Ltd (Period : July, 2018 - December, 2018)

OF


M/s Prism Johnson Limited. (Formerly Prism Cement Limited) Village—Mankahari, P.O.-Bhatila Distt., - Satna (M.P.)

The environmental clearance would be applicable to 1143.41 Ha.	Ŷ	Initial grant of 1143.41 ha Environment Clearance comprised of mining lease of 791.004 ha + 253.326 ha. + 42.798 ha + 56.282 ha. (PL).Subsequently PL was not converted into ML.			
		Later, 791.004 ha + 42.798 ha were amalgamated and after leaving some restricted area, mining lease was granted for an area of 772.067 ha only. 772.067 ha ML was granted EC vide MoEF letter No. J-11011/949/2007-IA-II (I) dated 22.09.2008. Now the said EC 1996 pertains to only 253.326 ha ML area out of 1143.41 ha for compliances. The copy of the approval letter is enclosed as Annexure 1			

excava	ation, quan	e calendar plan including itum of limestone and wast s should be made.	no MP/S		PLN/MOD-81/2017	theme of Mining vide IBM letter 7-18/ Jabalpur Dtd 23.03.2018 Annexure 2
		I	Production Plan f	or last five years for	253.326 ha.	
	SI no.	FY	Production as per SoM	Production as per EC limit	Actual production	
	1.	2012-13	3000130	2175000	1860677	Production within EC
	2.	2013-14	3000150	2175000	2174297	limits.
	3.	2014-15	3000050	2175000	2174343	
	4.	2015-16	3000000	2175000	2174591	
	5.	2016-17	3000000	2175000	2166122	
	6.	2017-18	3000000	2175000	2174813	

		Waste rock as per			
SI no.	FY	SoM	Soil as per SoM	Actual W/R	Actual Soil
		Cu M	Cu M	Cu M	Cu M
1.	2012-13	378700	114150	378010	113177
2.	2013-14	312400	116550	272791	112679
3.	2014-15	371782	132066	360911	105959
4.	2015-16	293600	103500	210638	130334
5.	2016-17	76575	343506	38102	343373
6	2017-18	1596848	624564	1854829	83094

The topsoil and O.B. earmarked dump sites.	dumps	should	be	stacked	in	Waste rock generated during the course of mining is used for concurrent backfilling of the mined out area. Top soil is spread over the backfilled area for carrying out plantation. Soil and OB dumps are maintained separately at earmarked locations as per the scheme of mining approved by the Indian
						Bureau of Mines.

Garland drains should be constructed downstream to
the existing nala system to safeguard the mine faces.Garland drain having dimension of cumulative length of 1.2 Km, a
width of 2.0 to 3 meters and depth of 0.75 to 1.2 meter already
exists. The drain system is continuously developed to safe guard
the mine faces.
Catch drains around the old OB dumps have been constructed.
Picture of the same is displayed.

Garland Drain

Settling Pond

The levels of SPM should not exceed 500 μ g/m³ at any station within the leasehold. Emission of SO₂, NOx and CO should be maintained below the levels prescribed by the competent authority. Control measures suggested in the EMP in this regard should be strictly implemented. The dust pollution in the limestone mine needs to be further controlled by incorporating additional mitigative measures at the sources itself.

The SPM, SO₂, NOx and RPM are well within the prescribed limits.

Ambient air quality monitoring reports of different locations from July' 2018 to Dec '2018 are given in **Annexure 5.**

		LI= Near I	PCL Color	iy L2	=Near Guest H	louse,		
		L3= Near Cr	usher Unit	-11 L4	1= Near Admin.	Building		
	_				RESU	JLTS		Limit as per National
SI. No.	Tests Conducted	Method	L1		L2	L3	L4	Ambient Air
NO.			22.11.1	8	22.11.18	22.11.18	22.11.18	Quality Standards
1	PM _{2.5} (µg/m ³)	NAAQM guide line volume - I by CPCB	44.20		40.11.1	53.85	45.60	60
2	PM ₁₀ (µg/m ³)	IS:5 182 (Part-23)	76.3		70.60	91.40	83.20	100
3	SO ₂ (µg/m ³)	IS:51 82 (Part-2)	15.70)	14.36	17.30	19.60	80
4	NO _x (µg/m³)	IS:5 182 (Part-6)	23.6	5	21.8	26.5	29.1	80
5	CO (mg/m ³)	IS:5 182 (Part-10)	0.76		0.84	0.89	0.99	2
								nplemented. Water from water tanker.
					Atomized wa hopper.	ter spraying	arrangement e	xists at the crusher

Water spraying System in Crusher Hopper

Environment Protection Measures are mentioned in EMP, salient features are as mentioned below:-

POLLUTION CONTROL MEASURES

The mining operations are not anticipated to raise the concentration of the pollutants any more. However, following measures have been/would be adopted to mitigate the SPM levels in ambient air:

i) Measures to prevent Generation and Dispersal of Dust

Dust particles, which are normally generated during mining operations become air borne, thus leading to increase in SPM level in the ambient air. Another source of dust generation is the transport of the material by trucks. Adequate control measures are therefore taken by PCL during both mining operations as well as transportation/dumping of Limestone/OB which shall be extended to proposed additional mining area also:

- Dust suppression systems (water spray) are/would be adopted at loading faces. –fully implements and complied.
- Dust generation is/would be reduced by using sharp tooth for shovels. –fully implements and complied
- Dust suppression system. (water spraying) have been/would be adopted on roads which are used for transportation And plying of vehicles —. fully implements and complied

ii) Measures to Control Air Pollution due to Airborne Dust

In addition to control measures during mining and transport operations, following steps have been/would be taken to prevent air pollution duo *to* air borne dust:

- More trees have been/would be planted around the dust generation points—fully implemented/complied..
- More trees have been/would be planted on both sides of the roads along slopes etc. ----fully

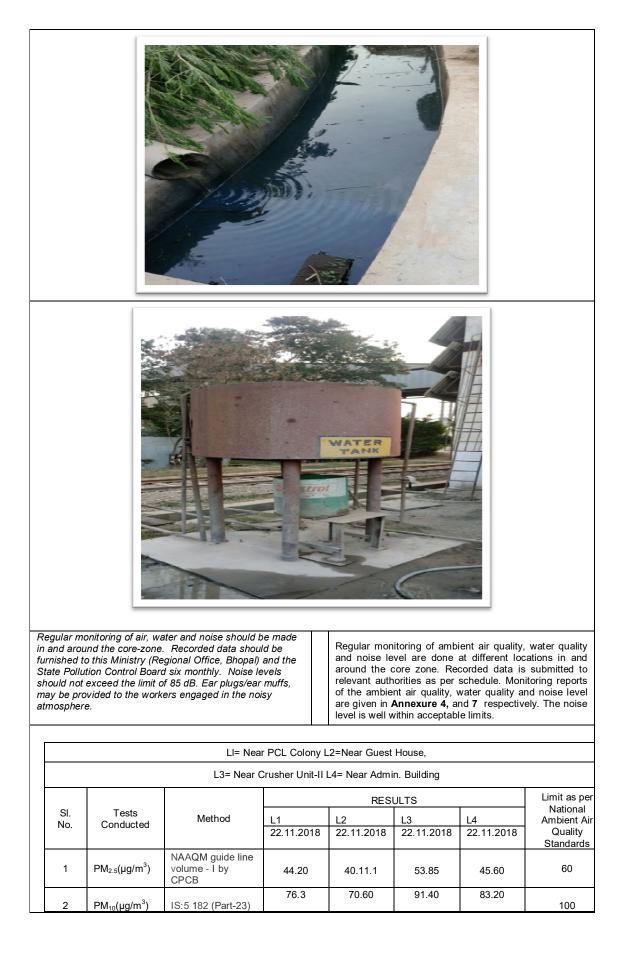
										in	plement	ted/cor	nplied.				
										ar ar im • D er du im	nd preve eas has pplement ust mask ngaged a umping p pplement	enting s been ted/cor at dust points e ted/cor	it fron / wo nplied. genera stc. — nplied.	provideo ation poin fully	ing the undert d to wo nts like	rkers loadi	dential —fully ng,
										don	e as per	scheo	dule w	ith minir ation to	num g	ap be	etween
										prev impl	ent ementeo		getting lied	g air	rborne	-	—fully
									•								
			on (1)			Locati			Location (3)					Location			Wind
Date	PM2.5	PM10	SO ₂	NOX	PM2.5	PM10	SO ₂	NOX	PM2.5	PM10	SO ₂	NOX	PM2.5	PM10	SO ₂		Direction
	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	-	ug/M ³	From
08.07.18	26.2	57.6	14.6	27.7	27.8	58.7	15.2 15.5	25.9	20.7 19.4	53.4 52.3	12.2 11.0	18.2 17.5	23.6	54.8 52.8	13.9	23.1 22.1	SE
24.07.18 09.08.18	23.7	51.8	14.2	28.8	25.2	50.9	10.0	27.0	194				21.9	1/X			CW
07.00.10	237	49.8	13.9	23.1	21.0	51.5							-				SW
26.08.18	23.7 25.0	49.8 52.1	13.9 14.2	23.1 24.3	21.0	51.5 49.9	12.2	22.2	19.2	45.1 53.6	9.9	14.7 13.5	18.5 22.5	47.6	10.1	16.2	SW SE SW
26.08.18 06.09.2018				-	-		12.2	22.2		45.1		14.7	18.5	47.6	10.1		SE
	25.0	52.1	14.2	24.3	26.5	49.9	12.2 13.3	22.2 20.2	19.2 18.3	45.1 53.6	9.9 8.8	14.7 13.5	18.5 22.5	47.6	10.1 10.8	16.2 17.7	SE SW
06.09.2018	25.0 26.3	52.1 48.4	14.2 14.2	24.3 24.3	26.5 25.2	49.9 46.7	12.2 13.3 13.9	22.2 20.2 22.9	19.2 18.3 21.9	45.1 53.6 46.5	9.9 8.8 10.8	14.7 13.5 16.2	18.5 22.5 23.7	47.6 55.6 43.7	10.1 10.8 12.2	16.2 17.7 17.5	SE SW NW
06.09.2018 22.09.2018	25.0 26.3 27.5	52.1 48.4 57.1	14.2 14.2 15.2	24.3 24.3 25.4 25.6 27.0	26.5 25.2 22.6 26.9 27.3	49.9 46.7 58.1 60.6 58.5	12.2 13.3 13.9 14.2 14.6 15.2	22.2 20.2 22.9 25.2 25.6 27.0	19.2 18.3 21.9 20.8 21.1 22.8	45.1 53.6 46.5 52.2	9.9 8.8 10.8 11.0 12.2 11.0	14.7 13.5 16.2 17.7 18.0	18.5 22.5 23.7 21.3 24.3 25.0	47.6 55.6 43.7 53.3 52.6 53.8	10.1 10.8 12.2 13.3 13.5 13.3	16.2 17.7 17.5 19.4 19.4 20.6	SE SW NW SE SW SW
06.09.2018 22.09.2018 08.10.2018 22.10.2018 13.11.18	25.0 26.3 27.5 27.8 28.7 28.6	52.1 48.4 57.1 57.5 59.4 56.3	14.2 14.2 15.2 15.2 14.5 14.6	24.3 24.3 25.4 25.6 27.0 27.7	26.5 25.2 22.6 26.9 27.3 27.6	49.9 46.7 58.1 60.6 58.5 57.1	12.2 13.3 13.9 14.2 14.6 15.2 14.6	22.2 20.2 22.9 25.2 25.6 27.0 29.1	19.2 18.3 21.9 20.8 21.1 22.8 20.2	45.1 53.6 46.5 52.2 52.8 54.1 54.7	9.9 8.8 10.8 11.0 12.2 11.0 13.3	14.7 13.5 16.2 17.7 18.0 18.0 18.2	18.5 22.5 23.7 21.3 24.3 25.0 23.9	47.6 55.6 43.7 53.3 52.6 53.8 53.8	10.1 10.8 12.2 13.3 13.5 13.3 13.9	16.2 17.7 17.5 19.4 19.4 20.6 20.6	SE SW NW SE SW SW SW
06.09.2018 22.09.2018 08.10.2018 22.10.2018 13.11.18 27.11.18	25.0 26.3 27.5 27.8 28.7 28.6 30.9	52.1 48.4 57.1 57.5 59.4 56.3 54.2	14.2 14.2 15.2 15.2 14.5 14.6 14.6	24.3 24.3 25.4 25.6 27.0 27.7 30.3	26.5 25.2 22.6 26.9 27.3 27.6 28.8	49.9 46.7 58.1 60.6 58.5 57.1 58.5	12.2 13.3 13.9 14.2 14.6 15.2 14.6 15.5	22.2 20.2 22.9 25.2 25.6 27.0 29.1 27.5	19.2 18.3 21.9 20.8 21.1 22.8 20.2 23.6	45.1 53.6 46.5 52.2 52.8 54.1 54.7 52.7	9.9 8.8 10.8 11.0 12.2 11.0 13.3 13.5	14.7 13.5 16.2 17.7 18.0 18.2 20.2	18.5 22.5 23.7 21.3 24.3 25.0 23.9 24.9	47.6 55.6 43.7 53.3 52.6 53.8 53.8 55.8	10.1 10.8 12.2 13.3 13.5 13.3 13.9 14.2	16.2 17.7 17.5 19.4 19.4 20.6 20.6 22.9	SE SW NW SE SW SW
06.09.2018 22.09.2018 08.10.2018 22.10.2018 13.11.18 27.11.18 Min	25.0 26.3 27.5 27.8 28.7 28.6 30.9 23.7	52.1 48.4 57.1 57.5 59.4 56.3 54.2 48.4	14.2 14.2 15.2 15.2 14.5 14.6 14.6 13.9	24.3 24.3 25.4 25.6 27.0 27.7 30.3 23.1	26.5 25.2 22.6 26.9 27.3 27.6 28.8 21.0	49.9 46.7 58.1 60.6 58.5 57.1 58.5 46.7	12.2 13.3 13.9 14.2 14.6 15.2 14.6 15.5 12.2	22.2 20.2 22.9 25.2 25.6 27.0 29.1 27.5 20.2	19.2 18.3 21.9 20.8 21.1 22.8 20.2 23.6 18.3	45.1 53.6 46.5 52.2 52.8 54.1 54.7 52.7 45.1	9.9 8.8 10.8 11.0 12.2 11.0 13.3 13.5 8.8	14.7 13.5 16.2 17.7 18.0 18.2 20.2 13.5	18.5 22.5 23.7 21.3 24.3 25.0 23.9 24.9 18.5	47.6 55.6 43.7 53.3 52.6 53.8 53.8 55.8 43.7	10.1 10.8 12.2 13.3 13.5 13.3 13.9 14.2 10.1	16.2 17.7 17.5 19.4 19.4 20.6 20.6 22.9 16.2	SE SW NW SE SW SW SW
06.09.2018 22.09.2018 08.10.2018 22.10.2018 13.11.18 27.11.18	25.0 26.3 27.5 27.8 28.7 28.6 30.9	52.1 48.4 57.1 57.5 59.4 56.3 54.2 48.4 59.4	14.2 14.2 15.2 15.2 14.5 14.6 14.6	24.3 24.3 25.4 25.6 27.0 27.7 30.3	26.5 25.2 22.6 26.9 27.3 27.6 28.8	49.9 46.7 58.1 60.6 58.5 57.1 58.5	12.2 13.3 13.9 14.2 14.6 15.2 14.6 15.5	22.2 20.2 22.9 25.2 25.6 27.0 29.1 27.5	19.2 18.3 21.9 20.8 21.1 22.8 20.2 23.6	45.1 53.6 46.5 52.2 52.8 54.1 54.7 52.7	9.9 8.8 10.8 11.0 12.2 11.0 13.3 13.5	14.7 13.5 16.2 17.7 18.0 18.2 20.2	18.5 22.5 23.7 21.3 24.3 25.0 23.9 24.9	47.6 55.6 43.7 53.3 52.6 53.8 53.8 55.8 43.7	10.1 10.8 12.2 13.3 13.5 13.3 13.9 14.2	16.2 17.7 17.5 19.4 19.4 20.6 20.6 22.9	SE SW NW SE SW SW SW

	GRO	UND WATER QUALITY REPO	DRT	
Sr No	Tests	Results Mines Site office Hinauti Sijahata	Results Sijahata Village Borewell	Detection Range
1	Colour	<5.0	<5	5-100
2	Odour	Agreeable	Agreeable	Qualitative
3	Taste	Agreeable	Agreeable	Qualitative
4	Turbidity as (NTU)	BDL	0.68	1.0-100
5	рН	7.20	7.29	2.0-13.9
6	Total Dissolved Solid as TDS(mg/l)	450.0	356.0	10-1000
7	Alkalinity (mg/l)	128.00	140.0	10-500
8	Total Hardness as CaCO ₃ (mg/l)	228.00	252.00	10-1000
9	Calcium as Ca (mg/l)	65.6	67.2	10-1500
10	Magnesium as Mg (mg/l)	17.49	20.41	5-1500
11	Chloride as Cl(mg/l)	36.00	60.0	10-1000
12	Flouride as F(mg/l)	0.40	0.41	0.02-10
13	Sulphate as SO₄(mg/l)	45.0	116.0	1.0-200
14	Nitrate Nitrogen as NO ₃ (mg/l)	15.0	20.0	5.0-100
15	Manganese as Mn(mg/l)	BDL	BDL	0.05-5

16	Zinc as Zn (mg/l)	BDL	0.20	0.02-100
17	Lead As Pb (mg/l)	BDL	BDL	0.005-1
18	Cadmium as Cd (mg/l)	BDL	BDL	0.002-2
19	Nickel as Ni (mg/l)	BDL	BDL	0.001-5
20	Arsenic as As(mg/l)	BDL	BDL	0.008-2
21	Total Chromium as Cr (mg/l)	BDL	BDL	0.04-10
22	Mercury as Hg (mg/l)	BDL	BDL	0.001-1
23	Copper as Cu(mg/l)	BDL	BDL	0.04-5
24	Boron as B (mg/l)	0.25	0.25	0.02-2
25	Aluminum as Al (mg/l)	BDL	BDL	1.0-100
26	Free residual Chlorine (mg/l)	BDL	BDL	0.1-5
27	Sulphide as H₂s (mg/l)	BDL	BDL	0.04-10
28	lodide as I (mg/I)	BDL	BDL	0.1-10
29	Iron as Fe(mg/I)	0.16	0.15	0.05-100
30	Total Coliforms (MPN/100 ml)	BDL	BDL	1.8
31	E Coli (Nos/100 ml)	BDL	BDL	1.8

The quality of effluents finally discharged should conform to the standards prescribed under GSR 422(E) dated 19.5.1993 and 31.12.1993.

No industrial wastewater is generated as the cement plant is operated on dry process.


For domestic wastewater, there is a sewage treatment plant of the state-of -art technology. It has the capacity to treat domestic wastewater of 600 KLPD.

Contaminated water generated due to washing of equipment is passed though grease and oil trap tank having separation chambers and pumping arrangement. For separation of oil and grease particles from water, prime mover has been provided. The oil and grease is skimmed and kept in sealed barrels for further disposal to authorized vendors.

The strained out water left in the tank is stored in tanks, and is re-used for washing of $\ensuremath{\mathsf{HEMM}}$

Detailed Report of treated effluent attached as - Annexure No- 10.

3	SO ₂ (µg/m ³)	IS:51 82 (Part-2)		14.36	17.30	19.60	80	
4	NO _x (µg/m ³)	IS:5 182 (Part-6)	23.6	21.8	26.5	29.1	80	
5	CO (mg/m ³)	IS:5 182 (Part-10) 0.76	0.84	0.89	0.99	2	
0						0.00	2	
r O	Tests		Results Mines Hinauti Sijaha		Results Sijah Borewell	ata Village	Detection Range	
	Colour		<5.	0	<5		5-100	
	Odour		Agreea	able	Agree	able	Qualitative	
	Taste		Agreea	able	Agree	able	Qualitative	
	Turbidity as (NT	U)	BDI	_	0.6	8	1.0-100	
	рН		7.2)	7.2	9	2.0-13.9	
	Total Dissolved	Total Dissolved Solid as TDS(mg/l)		0	356	.0	10-1000	
	Alkalinity (mg/l)		128.	00	140	.0	10-500	
	Total Hardness a	as CaCO₃ (mg/l)	228.	00	252.	00	10-1000	
	Calcium as Ca (r	mg/l)	65.0	6	67.	2	10-1500	
)	Magnesium as N	lg (mg/l)	17.4	9	20.4	20.41		
1	Chloride as Cl(m	ng/l)	36.0	0	60.	10-1000		
2	Flouride as F(mg	g/l)	0.4)	0.4	0.02-10		
3	Sulphate as SO ₄	(mg/l)	45.)	116	.0	1.0-200	
1	Nitrate Nitrogen	as NO₃(mg/l)	15.0)	20.	0	5.0-100	
5	Manganese as M	In(mg/l)	BDI	_	BD	L	0.05-5	
6	Zinc as Zn (mg/l))	BDI	-	0.2	0.02-100		
7	Lead As Pb (mg/	(1)	BDI	_	BD	0.005-1		
3	Cadmium as Cd	(mg/l)	BDI	_	BD	0.002-2		
9	Nickel as Ni (mg	/I)	BDI	-	BD	0.001-5		
C	Arsenic as As(m	ıg/l)	BDI	_	BD	L	0.008-2	
1	Total Chromium	as Cr (mg/l)	BDI	-	BD	L	0.04-10	
2	Mercury as Hg (I	mg/l)	BDI	_	BD	L	0.001-1	
3	Copper as Cu(m	g/l)	BDI	_	BD	L	0.04-5	
1	Boron as B (mg/	1)	0.2	5	0.2	5	0.02-2	
5	Aluminum as Al	(mg/l)	BDI	-	BD	L	1.0-100	
6	Free residual Ch	lorine (mg/l)	BDI	-	BD	L	0.1-5	
7	Sulphide as H ₂ s	(mg/l)	BDI	_	BD	L	0.04-10	
3	lodide as I (mg/l))	BDI	-	BD	L	0.1-10	
9	Iron as Fe(mg/l)		0.1	6	0.1	5	0.05-100	
)	Total Coliforms	(MPN/100 ml)	BDI	-	BD	L	1.8	
1	E Coli (Nos/100	ml)	BDI	-	BD	L	1.8	

	INC.	DISE RE	PORT			
Sr. No	Date of Monitoring		y Time Leq ue in dB(A)	Night	Time LeqVaiue in dB(A)	
1 SW (B.P. No 18)	19.11.18		64.9		62.3	
2 Near Western side ML boundary(Pillar No 14) of ML area	21.11.18		66.7		61.7	
3 Mankahari Village	19.11.18		55.3	46.0		
4 Hinauti Village	19.11.18		57.0		50.1	
I			Ear plugs, du in noisy atmo		provided to workmen working	
	Total PPE	's July-	18 to Dec-18	01	America De	
Material Dust Mask				Qty. 139	Amount in Rs. 2055	
Goggle Safety Glass PVC,				39	6116	
Hand Gloves				89	2232	
Helmet Industrial Safety				162	12517	
Jacket fluorescent High Visibility	/ Wear			100	3000	
Plug Ear muff				200	1700	
TOTAL The anti-pollution measures with reg	ard to environment a	uality		729	27620	
rescribed in the EMP should be imp me bound programme.	olemented schedule i	n a	environma already bu Water sp round the	ent quality preen implement raying is dor clock by wate	e on the entire haul roads	

EMP Compliance Report is summarized below:

A] POLLUTION CONTROL MEASURES

- Measures to prevent Generation and Dispersal of Dust
- Dust suppression systems (water spray) are/would be adopted at loading faces-fully implemented and complied...
- Dust generation Is/would be reduced by using sharp tooth for shovels -fully implemented and complied.
- Dust suppression system. (Water spraying) have been/would be adopted on roads which are used for transportation and plying of vehicles -fully implemented and complied.

ii) Measures to Control Air Pollution due to Airborne Dust

In addition to control measures during mining and transport operations, following steps have been/would be taken to prevent air pollution due *to* air borne dust: -fully implemented and complied.

- □ More trees have been/would be planted around the dust generation points -fully implemented/complied..
- □ More trees have been/would be planted on both sides of the roads along slopes etc. -fully implemented/complied.
- □ Afforestation around the mine to filter out the dust and preventing it from reaching the residential areas has been / would be undertaken-fully implemented/complied.
- Dust masks have been provided to workers, engaged at dust generation points like loading, dumping points etc. fully implemented/complied.
- □ Afforestation already mined out areas would be done as per schedule with minimum gap between excavation and afforestation to fix the dust and prevent it getting airborne -fully implemented/complied.

iii) Surface Water Pollution Control Measures

No surface water bodies are likely to get adversely affected by mining operations. No contamination of surface water source is anticipated as there are no toxic or chemical materials either in the mineral or the top soil cover. Rain water which is accumulated shall be guided down to suitable drains after passing through reservoirs used as settling tanks--fully implemented/complied.

iv) Ground Water Pollution Control Measures

The ground water table in the mine area is not likely to be affected. No control measures to prevent ground water have, therefore been recommended. -Agreed

v) Noise Pollution Control Measures

The noise level monitoring carried out in area has indicated the present noise levels are generally below 55 dB(A) which also includes impact of noise of deployment of various machines for excavation, transport, dumping, other auxiliary operations and plant operation. The following measures have been/would be taken to keep the noise levels well below the limits:

- □ A thick green belt has been/would be provided around the periphery of the mine to screen the noise. -fully implemented/complied.
- Trees are/would be planted on both sides of roads used for transportation vehicles. -fully implemented/complied.
- Proper maintenance of noise generating machinery including the transport vehicles. -fully implemented/complied.
- Provision of silencers to modulate the noise generated by machines. -fully implemented/complied.
- Provision of protective device like ear muffs/plugs. -fully implemented/complied.
- Provision of sound Insulated chambers for the workers deployed on machines producing higher level of noise like bulldozers, drills etc., --fully implemented/complied.
- Confining the noise levels by isolating the source of noise. -fully implemented/complied..
- Reducing the exposure time of workers to higher noise levels -fully implemented/complied..

vi) Measures To Reduce Ground Vibrations

- Peak particle velocity or Ground Vibrations for safety of nearby structures and residential buildings is well within 12.5mm/sec. -fully implemented/complied.
- For safe permissible charges per delay initially guidance was taken from the empirical propagation equation V=313.22(D/Q1/2).1.67 but now it is firmed up by monitoring studies during the development stage for existing mines--fully implemented/complied.
- Use of short delay detonators and non-electric detonators -fully implemented/complied.
- □ To contain fly rocks, stemming column shall not be less than burden of hole. -fully implemented/complied.
- □ As per the practice, each blast is carefully planned, checked, executed and monitored. Charge sheets and blasting data is recorded. -fully implemented/complied.
- □ Electric detonators are used. Covering the detonating fuse Blasting is carried out in daylight hours only. -fully implemented/complied.

- Care is taken to ensure that the effective burden is not excessive -fully implemented/complied.
- □ Number of blasts per delay are kept to the minimum. -fully implemented/complied.
- **D** To adopt multi row blasting & "V" pattern of firing. -fully implemented/complied.

B] MEASURES TO IMPROVE SOCIO-ECONOMIC CONDITIONS

After Commissioning of Existing Project

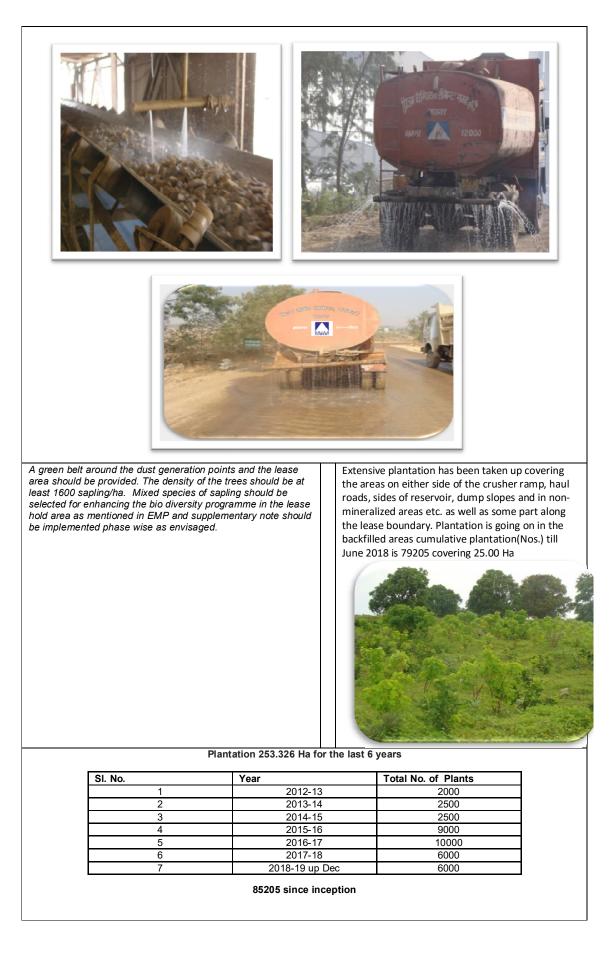
- 2.5 km WBM road to connect the villages -fully implemented/complied.
- Repair of existing connecting roads in villages -fully implemented/complied.
- Repair of drainage system in Hinouti village -fully implemented/complied.
- PCL has constructed 1.6 km long & 10 m wide WBM road connecting plant to State Highway. Construction cost was Rs. 12.0 lacs and annual maintenance cost is Rs. 3.0 lacs per annum. -fully implemented/complied. The road is now fully concreted.
- PCL is contributing an amount of Rs. 13000/- per annum towards sports in the surrounding villages. -fully implemented/complied.
- Provide drinking water to villagers in any social & religious gathering, -fully implemented/complied..

Proposed Welfare Measures

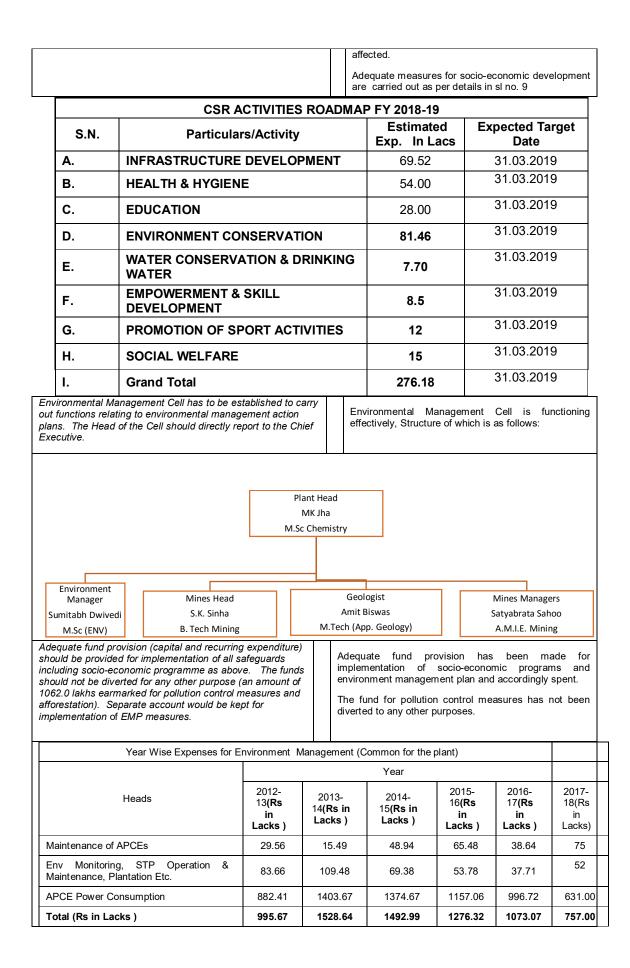
In addition to welfare measures carried out, PCL shall continue the efforts to improve the socio-economic status of the local habitants, PCL shall review the various welfare schemes going on in the area from time to time and take decisions of modification/addition of welfare schemes as per the requirement of local habitants,

Medical facility

- □ A dispensary has been provided in the township area for the employees and same service is extended to local populations. A mobile clinic for rural medical health care has already been provided which visit the nearby villages twice every week. -fully implemented/complied.
- Medical Centre is well equipped with all types of emergency medical equipment's e.g. emergency medicines, oxygen cylinder, electrically and manually operated suction pumps, statures etc. one well equipped ambulance containing arrangements for carrying 3 patients at a time is also provided to deal with emergencies. -fully implemented/complied.
- Medical Centre is provided full time medical officer, three nursing assistants, three helpers, & other staff. Special arrangements have been made for regular visits of child specialists and gynecologist from Satna. -fully implemented/complied.
- PCL is planning to provide pathological facility for testing of blood and urine at Medical Centre in coming year. fully implemented/complied.


Bank & Police Station

PCL-has-provided land & building and requisite facility to -a Nationalize (Bank & Police Station at village Mankahari. -fully implemented/complied.


Employment: most of the workers belong to the local area. In addition to this most of the local people are engaged in indirect employment like casual labour, dhaba, supply of local items, local mechanical works- -fully implemented/complied.

Communication

PCL has also provided land & building to telephone exchange at village Mankahari. With the establishment of Telephone Exchange, other business opportunity for local population is widened. -fully implemented and complied.

	-		
1 3		r reserves the right to stipulate any other as may be required based on feedback etc.	Agreed
		st of environmental protection	
1 4	The project this Ministry, Board / the S	would be monitored by the regional office of Bhopal / the Central Pollution Control State Pollution Control Board. The project hould extend full cooperation to the officers	Agreed
		nal Office by furnishing the requisite data /	
	information	' monitoring report and all provide full	
		e works / records etc.	
1		tal compliance status vis-à-vis project	
5		ion report specifically giving the progress of	Six monthly compliance report is continuously being
5		ntation of afforestation programme, social	submitted to RO MoEF, Bhopal and respective
		rities, including health care facilities should	authorities. The details are as given below:
		d for the scrutiny of this Ministry and	
		fice once in 6 months regularly for regular	
	monitoring p		
		1	.ease 253.326 ha.
	Year	Dise state as	D-t-
		Dispatch no.	Date
	2010	MIN / 2010 – 10137	26.07.2010
		MIN / 2010 – 10246	20.12.2010
	2011	MIN / 2011 – 11193B	20.07.2011
		MIN / 2011 – 11413	31.12.2011
	2012	MIN / 2012 – 12186	20.07.2012
		MIN / 2013 – 13033	15.01.2013
	2013	MIN / 2013 – 13260	18.07.2013
		MIN / 2014 – 14011	10.01.2014
	2015	MIN / 2014 – 14202	10.07.2014
		MIN / 2015 – 15017	10.01.2015
	2016	MIN / 2016 – 16226	29.09.2016
		MIN / 2017 – 17052	07.02.2017
	2017	MIN / 2017 – 17192	09.08.2017
		MIN / 2018 – 18071	09.03.2018
		MIN / 2018 – 18209	16.08.2018
	2018		
1 6	safeguards (Prevention the Environr	mentation of these conditions and will be enforced inter alia under the water and Control of Pollution) Act, 1974 and ment (Protection) Act 1986 and the Public rance Act 1991.	All these conditions as prescribed in the water (Prevention and Control of Pollution) Act, 1974 and the Environment (Protection) Act 1986 and the Public Liability Insurance Act 1991 are complied. Annexure 4 to 6.

मध्यप्रदेगा शासन बनिज ताधान विभाग •मंत्रालय

।/आदेगा. //

माोपाल, दिनांक १०-१-०७ इम बि रफ 3-01/05/12/1 :: यह कि मेसतें मिजम तीमेन्ट लिमिटेड के पक्ष में जिला सतना के ज़ाम हिनौती रवं तिजहटा में चूना प त्थर खनिज के निम्नानुसार दो खनिप ट्टा स्वीकृत है :-

।। जाम सिजहटा एवँ हिनौती दि० 25-3-85 से 24-3-05 तक रक्या 791.004 हे। वास्तविक रक्या 794.753 हे।

> दि० २४-11-01 ते २४-3-05 तक रक्वा उरा-115 हे०

ANNEXURE - 1 172-

2. यह आवेदक मेतर्स मिज्म सीमेन्ट दारा दिन कि 18-3-04 को 914-380 हे0 ई संगोधित रक्वा 931-284 हे0 ई के पर उक्त दोनो खनिप ट्टों के खेव व नया खेव 99-416 हे0 के गाासिल करते हुए खनिप ट्टा नवकरणा आवेदन पत्र प्रस्तुत किया । आवेदक प्रिज्म सीमेन्ट दारा उक्त नर क्षेत्र 99-416 हे0 के लिए पृ सक ते नये खनिप ट्टा प्राप्त करने हेतु खनिप ट्टा आवेदन पत्र दिनांक 27-11-04 को प्रस्तुत किया है ।

अह कि आवेदक प ट्रोटारी में। प्रज्य सीमेन्ट लिमिं। दारा प्रस्तुत उक्त नवकरणा आवेदन पत्र का परीक्षण किए जाने के उपरान्त आवेदक दारा आवे दित के मैं से दोनों खनिप ट्टों में से प्रतिबंधित क्षेत्र 59-301 हेक्टर होड़ेन के उपरान्त 77 2067 हे। क्षेत्र नवीनीकरणा हेतु उपलब्धा पाया गया।

4 अतः राज्य गासन दारा पूर्ण विचारोपरान्त मेसर्स ग्रिज्मसीमें ट लिमि० के पक्ष में खनि रियायत नियम विली 1960 के नियम 38 के तहत राज्य गासन को खनिज राजस्व की प्राप्ति स्व खनिज विकास, खनिज दोहन में सुविधा को द्वाइटगत रखते हुए जिला सतना के सिजहटा स्व हिनौती के स्वीकृत खनि पटटे क्रम्जाः रक्या

1997年1月1日日本美国大学生的主义

1997年基本的新闻

the second indicates and a second

8 28

I THE SPECIAL CONTRACT OF THE PROPERTY OF

Set Barrager

in the second second

794.753 हेक्टर एवं 37.115 हेक्टर कुल एकबा 831.868 हेक्टर में से 59.801 हेक्टर प्रतिबंधित क्षेत्र छोड़ने उपरबंत 772.067 हेक्टर क्षेत्र का समामेलन करते हुये निम्नानुसार मती/विवरण पर खनिपट्टे का प्रथम नवकरण स्वीकृत किया जाता है:-

· m2 m

हे। हे. आवेदक का नाम-

खनिज का नाम

त्वीकृति अवधि

828

838

848

मेसर्स पि जम सीमेंट लिमि. सतना हे म0 प्र0 हे

स्वीकृत क्षेत्र का विवरण जिला सतना, ब्राम सिजहटा स्वं हिनौती,

खतरा कुमांक- संलग्न बिह्येल अनुतार रकबा- 772.067 हे.

· 14:5-14

चूना भ त्थर

बीस वर्ष § दि. 25. 3. 2005 से दिनौंक 24. 3. 2025 तक §

\$5 हायल्टी/डेडरेंट आदि नियमों में प्रावधानित दर ते

868 थियोडोलाईट सर्वे आदि यदि आवग्यक हो तो किया जावे.

§7] अनुबंध निष्पादन के पूर्व यह तुनिश्चित कर लिया जावे कि आवेदक के उसर किसी प्रकार का खनिज राजस्व बकाया तो नहीं है।

181 अनुबंध निष्पादन के पूर्व यह भी सुनिधियत कर लिया जावे कि स्वीकृत क्षेत्र वन संरक्षण अधिमियमों से प्रभावित तो तहीं होता है।

हे? यह कि विभागीय ज्ञापन कुमांक 19-11/05/12/2 दिनांक 1 19 जुलाई, 2005 की अपेक्षा अनुसार पर्यावरण प्रभाव आंकलन अधिसूचना के अधीन खनम संक्रियार्थे प्रारंभ करने केपूर्व पट्टा-धारी व्यारा तक्षम प्राधिकारी की वांछित अनुमति प्राप्त कर प्रस्तुत कर दिया जाना सुनिश्चित कर लिया जीव 1

यदि आवेदक पट्टेपारी को उपरोक्त वर्ते मान्य हो तो

नियमानुसार जमानत राशि जमा कराकर विभागीय ज्ञापन कुमाँक 19-3%/01 /12 /1 दिनाँक 31.1.2001 के निर्देशानुसार कार्यवाही कर छः माह के अन्दर अनुबंध का निष्पादन कराया जावे स्व निष्पादित अनै बंध की स्क प्रति इस विभाग को तत्कान मेजी जावे।

भीपाल, दिनाँक

मध्यपुदेश के बाज्यपाल के नाम से तथा आदेशानुतार

> श्र स्ता बेठ गिवानो हे अवर सचिव

मध्यपुदेश शासन, खनिज साधन विभाग

अव्ह तेचित्र मध्यपुदेश शासन, खनिज ताधन विश्रीय

10-9-07

पू०कृ० 3-01/2005/12/1 प्रतिनिधि-:

§। § कलेक्टर, जिला सतना § म0908

§2§ तैचालक, श्रीमिकी तथा खनिकर्म, म090, शोपाल

§3 डायरेक्टर जनरल आफ माइन्स तेप्टी धनवाद ।

कन्द्रोलर जनरल इण्डियन व्यूरो आफ माइन्सनामपुर

§5§ देत्रीय खान नियंत्रक , आएतीय खान ज्यरो जवलपुर

हेही मे. प्रिज्म लोमेंट लि. राजदीप रीवा रोड ततना मा090

की ओर जनाई एवं आवश्यक कॉर्यवाही हेत

14. 10. 1999年1月1日日本部的

这些的**这种新教的是**的。

7 1 गाई फाईल

रजिस्टर्ड पार्सल द्वारा

GOVERNMENT OF INDIA MINISTRY OF MINES INDIAN BUREAU OF MINES O/O THE REGIONAL CONTROLLER OF MINES

जबलपूर, दिनांक : 23/03/2018

भारत सरकार खान मंत्रालय भारतीय खान ब्यूरो क्षेत्रीय खान नियंत्रक का कार्यालय

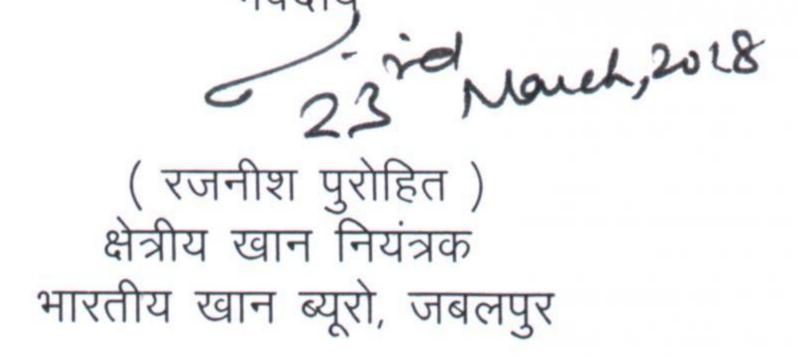
फा0 सं0 - MP/Satna/Limestone/MPLN/MOD-81/2017-18

सेवा में, मेo प्रिज्म सीमेंट लिमिटेड, राजदीप, रीवा रोड, सतना जिला– सतना (म0प्र0) 485001

विषयः— म०प्र० राज्य के **सतना** जिले में स्थित आपकी **प्रिज्म सीमेंट (ग्राम— हिनैाती एवं सिजहटा)** लाइमस्टोन खान (क्षेत्र 253.326 हे0) के एमसीआर—2016 के नियम 17(3) के अंतर्गत जमा किए गए अनुमोदित माइनिंग प्लान के लिए प्रस्तुत संशोधन का अनुमोदन।

N WITH THE ADD

संदर्भ :--1) आपके द्वारा जमा किये गये प्रक्रिया शुल्क की रसीद संख्या J/661, दि0 09/02/2018,


आपका / क्यू०पी० का पत्र, दि० 05 / 02 / 2018 एवं 15 / 03 / 2018 | 2) इस कार्यालय का समसंख्यक पत्र दि० – 08 / 03 / 2018 |

महोदय,

In exercise of the powers conferred by the Clause (b) of Sub-section (2) of Section 5 of Mines and Minerals (Development and Regulation) Amendment Act, 2015 read with Government of India Order no. S.O.1857(E),dated 18/05/2016, I hereby approve the above said Modification in approved Mining Plan including Progressive Mine Closure Plan submitted under Rule 17(3) of Minerals (Other than Atomic and Hydrocarbons Energy Minerals) Concession Rules, 2016. This approval is subject to the following conditions:

- 1 The Modification in approved Mining Plan is approved without prejudice to any other law applicable to the mine area from time to time whether made by the Central Government, State Government or any other authority and without prejudice to any order or direction from any court of competent jurisdiction.
- 2 The proposals shown on the plates and /or given in the document is based on the lease map /sketch submitted by the applicant/ lessee and is applicable from the date of approval.
- 3 It is clarified that the approval of aforesaid Mining Plan does not in any way imply the approval of the Government in terms of any other provision of Mines & Minerals (Development & Regulation) Amendment Act, 2015, or the Minerals (Other than Atomic and Hydro Carbons Energy Minerals) Concession Rules, 2016 and any other laws including Forest (Conservation) Act, 1980, Environment (Protection) Act, 1986 or the rules made there under, Mines Act, 1952 and Rule & Regulations made there under.
- 4 Indian Bureau of mines has not undertaken verification of the mining lease boundary on the ground and does not undertake any responsibility regarding correctness of the boundaries of the leasehold shown on the ground with reference to lease map & other plans furnished by the applicant / lessee.
- 5 At any stage, if it is observed that the information furnished, data incorporated in the document are incorrect or misrepresent facts, the approval of the document shall be revoked with immediate effect.
- 6 The Financial Assurance submitted by you for Rs. 6,83,84,100/- (Rs. Six Crore Eighty Three Lakh Eighty Four Thousand One Hundred only) is valid up to 31/03/2021 and next Financial Assurance shall be submitted on or before 31/03/2021.
- 7 This approval is restricted in respect of proposals given in the document for the period from 2018-19 to 2020-21 with validity up to 31/03/2021, subject to all other statutory clearances.
- 8 If the approval conflicts with any other law or court order/direction under any statute, it shall be revoked immediately.
- 9 The modification in approved mining plan is approved subject to extension of period of mining lease as per Mines and Minerals (Development and Regulation) Amendment Act 2015.
- 10 This approval is restricted to Major Mineral only and any reflection of minor mineral in the document is under purview of State Government.
- 11 As per Madhya Pradesh State Government's order dated 10/08/2011 if there is enhancement of production proposed from that in the approved scheme of mining under such circumstances additional stamp duty has to be paid by the lessee for the enhances quantum of production and also a supplementary agreement has to be made by the lessee.

संलग्नः-अनुमोदित संशोधित माइनिंग प्लान की एक प्रति के साथ।

PRISM JOHNSON LTD. CSR ACTIVITIES EXPENSE SUMMARY FY 2017-18

ANNEXURE-21

PANCHA	YAT COVERED :07	Mankahari, Hinauti, Sijahata, Baghai, Bathi	ya, Mahurachh & Narsinghpur				
VILLAGE	COVERED : 14	Mankahari, Hinauta, Hinauti, Pithaipur, Bai	ndarakha, Sijahata, Medhi, Jhanjhar, Mugwari, Baghai, B	athiya, Bamha	uri, Mahurach	nh & Narsinghpur	
S.N.	Particulars/Activity	Objectives	Key Initiatives/strategy	Estimated Exp. In Lacs	Expected Target Date	Current Status	Exp Rs in Lacs
۹.	INFRASTRUCTURE DEVEL	OPMENT (CSR ACT SCHEDULE VII - X)					
1	WBM Road at Sijahata	To provide basic infrastructure for smooth transportation, easy access to remote area and road safety	From main road to Barha Tola approx. 2 km At village Sijahata	10.00	Nov-17	Work Completed in March-18	4.58
1		To provide basic infrastructure for smooth transportation, easy access to remote area and road safety	From Main road Baghai to Tapa approx. 1.5 km at village Baghai	8.00	Nov-17	Work Completed in March-18	3.81
2	Development of Jabla Baba as picnic Spot	Conservation of Cultural monument	Construction of cloth changing room for women and development at Jabla Baba Temple, Hinauti	8.00	Mar-18	Proposal submitted for management approval on 14.07.2017	0.00
3	Construction of Market shade	To provide place for rural market	Construction of shade and platform for rural market at village Baghai	8.00	Mar-18	Work is in progress	3.34
4	Construction of	Providing best funeral facility to villagers in	At gram Panchayat Mahurachh	4.75	Mar-18	Completed in Aug-17	3.63
4	Cremation Shed	any season.	At gram panchayat Narsinghpur	4.75	Mar-18	Completed in Nov - 17	3.70
5	Bus Shelter	To provide a place for passengers waiting in rural areas	At village Hinauti	4.00	Mar-18	Completed in Sep - 17	1.48
6	Construction of	To develop infrastructure for water	At village Baghai	6.00	Mar-18	Completed in March -18 (270 Meter)	3.71
0	Trench/Drainage System	drainage at rural areas	In front of New Bulker Yard Bamhauri	10.00	Mar-18	Completed in Nov -17	8.39
7	Open defaecation free (ODF) Toilet	To create awareness for best hygiene practices among the villagers & students.	Construction of 138 ODF Toilets at Village Baghai under Swachh Bharat Mission and Sanitation & Hygiene awareness programs		Mar-18	PO released for 45 nos toilets. 30 nos completed. Rest work is in progress	7.89
8	Repairing/Construction of village gate	To help visitors for identification of villages	Construction/repairing of village gate at village Bathiya	4.00	Mar-18	Completed in Nov - 17	3.02
9	Electrification	To develop rural infrastructure for lighting	Installation of electric pole with lights from Railway gate to Durga Mandir Bamhauri	5.00	Mar-18	Completed in Nov - 17 (26.11.2017)	2.78
10	C. C. Road (New Project)**	To provide basic infrastructure for smooth transportation, easy access to remote area and road safety	Construction of new PWD road from Bamhauri turning to Hinauti turning app. 1.5 KM (Partly) (To be paid in 02 yrs)		Mar-18	Work proposal submitted to Government. Work is pending government approval.	0.00

11	Check Dam with water reservoir (New Project)**	To promote water conservation & water harvesting awareness	Construction of check dam at Baghai village (Partly)	25.00	Mar-18	Work order Released. Hold due to crop, will start after harvesting and physical possession	0.00
12	Construction of drain at dispatch gate	Development of Rural Infrastructure	Development of basic rural infrastructure near old dispatch gate, Bamhauri Hinauti Road (120 meters Hume pipe crossing)		Dec'17	Completed in March	8.47
13	White Wash work at District Hospital Satna	Development Infrastructure	Support to Government		June'17	Completed in Sep - 17	7.86
14	Whitewash Cremation shed Sijahata & Mankahari - 17-18	Rural Infrastructure Development	Whitewash and other miscelleneous work at cremation shed Sijahata and Mankahari		18-Feb	Completed in Feb-18	0.33
15		To display of work done by PJL in nearby villages	At village Baghai, Sijahata, Hinauti, Bamhauri, Mankahari, Mahurachh and Bathiya		Mar'17	Completed in Feb-17	0.63
16	Road Repairing at Baghai (PCC & Bitumin Road)	Rural Infrastructure Development	Bitumin work, cleaning and grouting of display board		Mar'18	Completed in March	2.37
	WBM road construction behind Govt. Middle School Baghai	Rural Infrastructure Development	WBM road construction		Mar'18	Completed in March	1.30
						Sub Total	67.29
в.	HEALTH & HYGIENE (CSR	ACT SCHEDULE VII - i)					
			At village Mankahari	1.00	Oct-17	Completed on 09.09.2017 benefitted 312 pts	0.68
		To provide good & healthy environment at	At village Sijahata	1.00	Nov-17	Completed on 03.02.2018 benefitted 372 pts	0.66
1	Mega Medical Camp	nearby villages through providing free specialized consultation, free Blood Diagnostic, Free optical and free medicine	At village Hinauti	1.00	Dec-17	Completed on 28.10.2017 benefitted 293 patients	0.62
		distribution	At village Tapa	1.00	Jan-18	Completed on 25.11.2017 benefitted 592 patients	0.67
			At village Baghai	1.00	Feb-18	Completed on 23.12.2017 benefitted 390 patients	0.65
2	Mobile Health van visit to nearby villages	To provide medical facilities at door step for good health	Visit by Mobile health van to nearby villages on weekly basis with providing free medical services like doctor & medicines distribution.	3.00	Continuous Activity	Attended 961 patients till Mar-18	0.00
3	Free Consultation & Medicine Distribution from PJL Medical Centre Out Door Patient	To provide round O'clock medical facility to villagers of nearby villages	Free consultation & medicines distribution from PJL Medical centre Out door patient to nearby villagers	18.00	Continuous Activity	Attended 20905 patients till Mar-18	11.59
4	EYE Camp	To support Govt sponsored schemes under different health programs.	Collection of patients data through Mega Medical Camps	1.00	Feb-18	Completed. 20 patients sends to Sadguru Netra Chikitsalaya for Surgery on 07.02.2018	1.20
		ander amerent nearti programs.	One Eye camp will be organized			101 541501 01 07.02.2010	0.00

5	Ambulance Service	To provide transportation support in ill health at nearby villagers	24 hrs ambulance facility will be provided to nearby villagers for free of cost.	5.00	Continuous Activity	Attended 2332 patients till Mar-18	6.22
			Government Middle School Mankahari		()ct-1/	Completed in Nov - 17. Health Checkup of 31 students carried out.	0.00
			Government Primary School Narsinghpur		Nov-17	Completed in Nov - 17. Health Checkup of 16 students carried out.	0.00
6	School Child Health	To provide medical facility at door step for	Government Middle School Hinauti	0.50	Dec-17	Completed in Oct - 17. Health Checkup of 34 students carried out.	0.00
0	Check-up good health	good health	Government Primary School Barha Tola Sijahata	0.50	lan-18	Completed in Sep -17. Health Checkup of 31 students carried out.	0.00
			Government Primary School Bandarkha		Feb-18	Completed in Nov -17. Health Checkup of 72 students carried out.	
			Government Middle School Tapa			Completed in Nov -17. Health Checkup of 182 students carried out.	0.00
7	Support to Govt. sponsored health Schemes	To support Govt. sponsored schemes under different health programs.	Construction of ODF toilet under "Swachha Bharat Mission" at Village Bandarkha. (10 Nos.)	1.00	As and when required	Completed in Dec -17	2.41
8	Operation of Sulabh Complex	To provide a hygienic place	Sharing of Operation & Maintenance expense of Sulabh Complex at Mahurachh Turning	1.36	Continuous Activity	Completed in March-18	0.30
10	Medical Health Check up Camp	To bring awareness about health and Hygiene	Medical Health Check up Camp for Drivers			Drivers health check up camp organized on 04.08.2017 & 05.08.2017 benefitted 228 drivers	0.00
						Sub Total	25.01

с.	EDUCATION (CSR ACT SCH	IEDULE VII - ii)					
1	Repairing , Maintenance and white wash of	To Provide comfortable environment for	Repairing , Maintenance and white wash of government primary School buildings at Medhi	1.00	Jan-18	Completed in Feb-18	0.89
1	School buildings in nearby villages	study	School building repairing & white wash at government higher secondary school Sijahata	3.00	Jan-18	Completed	5.58
2	Sweet Distribution to schools of nearby villages	To celebrate National Days	Distribution of Sweets to near by 24 Government & Private Schools of nearby villages	1.50	On 15 the August 17 & 26 Jan -18	Completed. Sweet Distributed on 15.08.17 & 26.01.2018	2.13
3	Sitting Arrangement at government schools		Providing of Dari, Desk table Fan and electrification work to government primary school Medhi	1.00	Jan-18	Completed. Distributed on 20.02.2018	0.06
4	Uniform Distribution at government schools	To encourage students for education	Uniform distribution to student of government primary school Medhi	1.00	Oct-17	Completed. Distributed on 20.02.2018	0.25
5	Repairing & Maintenance of School Premises	To Provide comfortable environment for study	Construction of boundary wall at Govt girls middle school Sijahata	4.00	Mar-18	Completed in Sep - 17	2.52
6	Renovation of Anganvadi	To Provide comfortable environment for study	Renovation and development of Anganvadi at village Mahurachh, Sijahata & Baghai	3.00	Mar-18	Completed in March-18	2.25
7	Electrification at Govt Middle School Baghai	To provide better and convienient environment for study	Electrical fitting with electricity connection at Govt. Middle School Baghai			Completed in March	0.90
8	Boundrywall Construction at Govt School Baghai (16 M)	To provide better and convienient environment for study	Remaining boundarywall construction at Govt. Middle School Baghai		Mar'18	Completed in Jan-18	1.18
						Sub Total	15.77
D.	ENVIRONMENT CONSERV	ATION (CSR ACT SCHEDULE VII - iv)					
1	Plantation in buffer zone		Installation of 100 tree guards with plants in nearby villages	3.00	Between July -17 to Feb - 18	50 nos installed. For rest vendor denied for supply. Deplying new vendor for supply is in progress	0.54
2	Plantation in core zone	Environment Conservation through	Survival & Maintenance of AFR plantation at Sijahata & Baghai	15.00	Continuous Activity	Completed. Survival and Maintenance work is in progress, 5000 sapling replaced as make up plantation, supervised by Environment department	16.03
3	Plantation at nearby villages	plantation	Development of new clusters for plantation in nearby villages	5.00	Mar-18	Proposal & presentation submitted to management for Vantulsi, Chandan, Safed Musli and Teakwood cultivation on contract farming on 20.09.2017at village Satari on 14.58 acre	0.00
4	Distribution of fruit bearing plants		Distribution of 3000 fruit plants and plantation at nearby villages	1.00	Between July -17 to Feb - 18	Completed 1000 fruit plants distributed to villagers from 15.09. to 23.09.2017	0.66

	WATER CONSERVATION	& DRINKING WATER (CSR ACT SCHEDULE VII	- i)			Sub Total	17.23
1	Drinking water supply through Water Tanker		Providing water Tankers for drinking purpose as required	4.00	As and When Required	Completed. Supplied 121 Tanker water	1.84
2	Nishulk pyau' in summer		Water Hut in summer Season at Mahurachh turning ,Water Hut in summer Season at Mahurachh turning ,	0.20	From Apr to June 17	Completed. Started from 10.04.2017 and ends on 30.06.017	0.23
	season			0.20	From Apr to June 17	Completed. Started from 10.04.2017 and ends on 30.06.017	0.23
		To provide safe & pure drinking water	Installation of new Hand pumps at Narsinghpur	0.75	Oct-17	Completed in Dec-17	0.55
3	Installation of new hand		Installation of new Hand pumps at Mankahari	0.75	Oct-17	Completed in Dec-17	0.55
3	pumps		Installation of new Hand pumps at Mugvari	0.75	Oct-17	Completed in Dec-17	0.55
			Installation of new Hand pumps at Bamhauri	0.75	Oct-17	Completed in Dec-17	0.55
4	Water Harvesting Structure at Wells	To promote water conservation & water harvesting awareness	08 structure to be made at nearby villages (Mankahari, Bamhauri, Narsinghpur, Hinauti Sijahata, Baghai and Bathiya)	2.00	Mar-18	Completed in Dec-17	2.89
5	Deepening of Pond	To enhance water reserving capacity	Deepening of Ponds at nearby villages	4.00	Mar-18	Proposal submitted for management approval on 31.08.2017 and hold by management	0.00
8	Extension of Water Supply line at Bandarkha (400 mtrs)	Providing safe drinking water	To provide support to Government Sponsored "Swachchhata Abhiyan"		Dec'17	Work order release with PO No. 3100127877 and work is in progress	3.34
						Sub Total	10.70
	EMPOWERMENT & SKILL	DEVELOPMENT (CSR ACT SCHEDULE VII - ii)					
		To develop vocational skills through training to unemployed persons	Training programmes/sessions for driver for at least 25 male incumbents	2.00	Mar-18	Completed in Dec-17	1.40
1	Vocational training programs	To develop vocational skills through training to unemployed persons	Training program for Electrician/plumber Skill development for 25 incumbents	2.00	Mar-18	Completed. Started from 22.01.18 to 20.02.2018	0.00
		To develop vocational skills through training to unemployed persons	Training program for Stitching/Beautician for 25 females incumbents from nearby villages.	2.00	Mar-18	Completed. Training Duration from 26.06.2017 to 25.07.2017, No. of Trainees =25	1.14
2	Farmers Training	To develop skills for agriculture development	Training program for farmers from nearby villages	1.00	Mar-18	Completed. Provided Training at Mahurachh Village on 23.05.2017	0.00
3	Computer Training	To enhance Skill Development	Providing computer training to 30 nos. villagers youth from nearby villages		July'17	Completed in June 17	1.50
						Sub Total	4.04
	PROMOTION OF SPORT A	ACTIVITIES (CSR ACT SCHEDULE VII - vii)					

1	Development of Playground	To develop sports skills among villagers	Development of playground at village Mankahari & Higher Secondary school Sijahata	10.00	Mar-18	 Completed at Govt. Hr. Sec. School Sijahata Aug-17 Completed in Dec-17 Playground boundrywall at Mankahari (130 M) 	8.91
2	Sponsorship & Contribution to various tournaments at surrounding area	To encourage & support to sports skills among villagers of nearby villages	Financial support to various tournaments / sports activities among villagers of nearby villages (Block & District Level)	3.00	Mar-18	Completed. 13 activities covered 1. Organized Solar Car Race from 07.04.2017 to 09.04.2017 at Hinauti 2. Cricket Tournament at Mankahari 3. Football Tournament at Amarpatan 4. Amateur Kabaddi Tournament 5. Satna Jila Olympic Sangh 6. Independence Club Football Tournament Nagod 7. Cricket Tournament at Baghai 8. Cricket Tournament at Hinauti 9. Cricket Tournament at Sijahata 10. Cricket Tournament at Rampur Baghelan 11. Volleybal Tournament at satna 12. Kit to Sijahata Premier League 13. APS Memorial Cricket Tournament Rampur Baghelan	6.65
						Sub Total	15.56
н.	SOCIAL WELFARE (CSR AC	CT SCHEDULE VII - viii)					
1	Slogan writing/Wall Painting	To create awareness amongst the villagers on different social causes & issues.	To create awareness and motivation amongst the local villagers pertaining to health (AIDS & TB) & hygiene, education, self reliance, empowerment and other themes through wall paintings and slogans writing. (250 nos.)	2.50	Mar-18	Completed in March-18	2.13
2	Support to social, cultural and recreational activities	To support & encourage cultural activities among villagers of nearby villages	Contribution & sponsorships for various cultural- religious programs in nearby Gram Panchayat, Charitable, Financial aid to poor villagers, Charitable Trusts, Samuh Bhoj-Bhandara, trusts etc	5.00	Mar-18	Completed in March-18. 14 activity covered	7.89
3	Miscellaneous activities	To support different government sponsored social welfare activities	Providing contribution, machinery and other assistance required as per development activity	5.00	As and when required	01 Activity Completed (Participated in Narmada Sewa Yatra)	0.28
						TOTAL	10.31
			SUB TOTAL	370.26			165.91
J.		EXTENDED WORK FROM LAST	YEAR i.e. FY 2016-17				
	INFRASTRUCTURE DEVEL	OPMENT (CSR ACT SCHEDULE VII - X)					
1	Development of Old Shiva Temple Jabla baba (Hinauti) as Picnic Spot	Conservation of Cultural monument	Fixing of paving tiles at Pakka Ghat Near Jabla Baba Shiva temple area etc.	20.00	Mar'17	Completed in May -17	1.41
2	Construction of Cremation Shed	Providing best funeral facility to villagers in any season.	At Village Baghai	4.50	Mar'17	Completed in Nov-17	2.90
3	Soil Filling Work at Mahurachh Turning	Rural Infrastructure Development	Mahurachh Turning	0.00	June'17	Completed on May -17	3.73
	HEALTH & HYGIENE (CSR						
3	HEALTH & HYGIENE (CSR Toilets	To create awareness for best hygiene practices among the villagers & students.	Construction of Toilets at Govt. Girls Middle School Sijahata (02 No.)	5.00	Mar'17	Completed in March	3.69
3		To create awareness for best hygiene		5.00 29.50	Mar'17	Completed in March	3.69 11.72

Prism Cement Limestone Mine 253.326 Hect: Modification of Mining Plan_2018-19 to 2020-21

exploration activities are completed. As on 1st January 2018 the total reserves of this mine are 28.73 million tones.

Annual requirement of Limestone is about 9.0 million tonnes. It is proposed to mine about 3.00 million tonnes of Limestone every year from this ML area. Remaining quantity will be met from other leases of the Company. Based on the proposed production capacity, the life of the mine is about 9.5 years which is likely to extend as reserves are enhanced post exploration activates.

Conceptual Exploration:

The exploration has been carried out by the GEM Division of M/s ACC Ltd. Overall three leases in village Hinauti & Sijhatta. The spacing of BH are at 200 x 200 mtrs. 23 boreholes has been completed in the current 2 years period. Now, it is proposed to carry out remaining drilling during this proposal periods from 2018-19 to 2020-21 and there will be no conceptual exploration in the mining lease area. The proposed locations where drilling will be carried out is shown in the Plate No. – IV.

				Table No.	4.14			
·	As on Date	2	D	uring Propos	al Period	During Conceptual Period		
Түре	Quantum No. / Size	Area Covered (Ha.)	Туре	Quantum No. / Size	Area Covered (Ha.)	Туре	Quantum No. / Size	Area Covered (Ha.)
Pits			Pits			Pits	and the second	
Trench			Trench			Trench		No. Contraction of the second se
вн	59 + 16 + 23	253.236 (Large Grid)	ВН	36	(200X200 Grid) 253.236 Ha (2 nd Band)	BH & COL		
Other			Other			Other		
	· · · · · · · · · · · · · · · · · · ·			l			Charles and a second second	

Table No. 2.14

All exploration will be conducted in the proposal period there is mo/proposal to extended activities in to conceptual period.

Surface Geological Plan and Sections have been given in the Plate No. - IV and Plate No. - V respectively showing the locations of the boreholes drilled and ultimate pit limit.

Conceptual development:

Following Pits will be available at the end of Conceptual Period:

Chapter 2; Mining

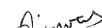
í

Prism Cement Limestone Mine 253.326 Hect: Modification of Mining Plan_2018-19 to 2020-21

				Table I	No. 2.15					
		Broken	Pit	Surface	Pit Bottom	Maximum on an	No. of B y side of		Overall	
S. No.	Pit Name/ No.	Area (Ha)	Bottom Area (Ha)	RL (Range)	RL (Lowest)	Туре	Bench No.	Avg. Height	Slope	
						Soil	1	1		
1	Pit-1	121.17	104.85	288- 295	273	Waste Rock	-	-	45°	
						Limestone	2	6		
						Soil	1	1		
2	Pit-2	47.54	26.54	291- 299	243	Waste Rock	3	8	45°	
				,		Limestone	5	6		
	Total	168.71	131.39							

Ore to be generated during conceptual period Waste Rock to be generated during conceptual period Soil to be generated during conceptual period = 66,898,737 Tonnes
 = 23,568,600 M³ (Cum)
 = 1,113,912 M³ (Cum)

Plan period 2021-26:


「「「「「「「「「「「「「」」」」

The opening balance reserve for this period is proposed to be at 6.52 million tons after generating 15.00 million tons for the plan period of 2016-21. The ore proposed to be exploited in this period is 6.5 Million tons. The working is proposed to be between pit located between N -1208 to 361 and E -20 to 638, occupying an area of 10.3 ha.. The second working from where mineral is proposed to be exploited will be located between N 2560 to 2885 and E 507 to 1134 in an area of 10.82 ha.. The working will be limited to two to three benches in mineral. The residual reserves at the end of this plan period area proposed to be at 0.00 million tons.

AW

fli

Prism Cement Limestone Mine 253.326 Hect: Modification of Mining Plan_2018-19 to 2020-21

Conceptual OB Dump Management:

The inter burden of saly limestone ranges from 16 to 26 mts thin soil cover of 1 to 6 mts covers the area left out of current mining activities .It is proposed to utilize the Waste rock in backfilling the mined out area. Plantation will be carried out over it after spreading 1 mtr. thick soil cover. No external dumping will be done during rest of life of the mine. Entire quantity of soil and waste rock to be generated will be utilized in backfilling purpose in mined out area.

(A) Present Position

a) Following Soil dumps will be available at at present: TABLE NO. 2.16

Dump	Туре	Quantity	Quantity	Base	Base	Avg.	Area	Location
No.	Active/	(M³)	(Tonnes)	Area	Area	Height	stabilized	
	Inactive			(M²)	(Ha.)	(M)		1
S1	Inactive	97281	155649	28366	2.83	3	Terracing &	1241E to 1528E
01	maonie	07201	100040	20000	2.00	Ų	Gentle slope	and -86N to -351N
S2	Inactive	144105	230568	13410	1.34	13	Temporary in	1315E to 1447E &
02	maotivo	144100	200000	10410	1.04	10	pit Soil Storage	-271N to -411N
Tot	tal	241386	386217	41776	4.17			

b) Following Waste dumps are available in the area at present:

Dump ⁻ No	Type Active/ Inactive	-	Quantity (Tonnes)	Base Area (M²)	Base Area (Ha.)	Avg. Height (M)	Area stabilized	Location
D1	Active	821892	2054730	47907	4.79	17	Temporary in pit Dumping	621E to 850E and -1205N to -1517N
Total		821892	2054730	47907	4.79		A CONTRACT OF A CONTRACT	

MINITER/APPROVED

Pasm Cement Limestone Mine 253.326 Hect: Modification of Mining Plan_2018-19 to 2020-21

Proposal Period Position (B)

Following Soil dumps will be available at the end of Proposal Period: a) 📖

Dump No.	Type Active/ Inactive	Quantity (M³)	Quantity (Tonnes)		Base Area (Ha.)	Avg. Height (M)	Area stabilized	Location				
- <u>S</u> 1	Inactive	97281	155649	28366	2.83	3	Terracing & Gentle slope	1241E to 1528E and -86N to -351N				
S2	Inactive	144105	230568	13410	1.34	13	Temporary in pit Soil Storage	1315E to 1447E & -271N to -411N				
Tot	al	241386	386217	41776	4.17							

Following Waste dumps will be available at the end of Proposal Period: b)

Table No. 2.18

Dump Nó.	Type Active/ Inactive	1	Quantity (Tonnes)	Area	Base Area (Ha.)	Avg. Height (M)	Area stabilized	Location
D1	Active	821892	2054730	47907	5.79	27	Temporary in pit Dumping	571E to 860E and -1205N to -1517N
Total		821892	2054730	47907	5.79	ſ		

(C) Conceptual Period Position

a) Following dumps will be available at the end of conceptual Period: No dumps (soil & Waste Rock) will be available at the conceptual period. Entire soil and waste rock will be used for backfilling.

NO/4-INDIA

4.5 Conceptual Reclamation & Rehabilitation:

APPROVED The mining lease are is about 248 Ha. Area will be disturbed by mining activity out of which 80 Ha mined out area will be reclaimed and rehabilitated by way of backfilling and plantation at the end of life of the mines and rest of the area i.e. 168 Ha. will be developed as water reservoir for recharging the water table of the area.

m Cement Limestone Mine 253.326 Hect: Modification of Mining Plan_2018-19 to 2020-21

			laple	NO. 2.19	_	·····	
			Reha	bilitation (Ha)		Protective
status	Mined Out Area (Ha)	Reclamation by Backfilling (Ha)	By Plantation on Backfilled area	By Water Reservoir	Total	Rehabilitation of Dump by Comp. & Afforestation	measures for dumdum (GD/RW/ST)
	55.12	49.5	19.09	14.3	33.39		,
Present the end Scheme	22.91	16.71	7.68	0	7.68		-
eriod the end sof nceptual eriod	248	80.0	80.0	168.0	248		

Table No. 2.19

The exploration in the lease is underway. The ultimate area (size) of the pit will be atound 248 Ha. Whereas, ultimate depth of the pit will be about 60 m. and ultimate pit slope will be 45⁰.

Pit position as on date, proposed pit position at the end of scheme period and ultimate pit size at the end of life of the mine will be as shown in Conceptual Plan in Plate No. – XI and in section along with proposed Conceptual Plan is given in Plate No = XII.

B. UNDERGROUND MINING:

NOT APPLICABLE

Chapter 2: Mining

Page | 47

AIR QUALITY MONITORING REPORT FOR MINES MONTH - NOVEMBER YEAR-2018

I NAME & ADDRESS OF FACTORY

PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST : BATHIA DISTT : SATNA (M.P.)- 485111

Sumitabh Dwivedi

AMBIENT AIR QUALITY MONITORING
 DURATION
 DISTANCE FROM FACTORY

3. WIND DIRECTION

NAME OF PERSON PREPARED THE REPORT

3

 8X3=24Hrs.
 LOCATION (1) - SW (BP No. 18)
 LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (3) - Near Hinouti Village

MENTIONED IN THE TABLE

		puiM	Direction	Honoria	From		SW	SF
			CO	5.0	_W/Bn	-	BUL	BDL
			NOX	0.3	W/gn	200	50.0	22.9
	Acation (4)		SO_2		INI/Rn	13.0	1.01	14.2
	H	٩Ľ	PM10	no/M3	TAT/Bn	53.8	2.22	55.8
			PM2.5	uo/M ³	1	23.9		24.9
		┢	3	ug/M3	ł	BDL		BDL
		NON	VON I	'W/an	ł	18.2	-	20.7
	ocation (3)	SO.		ug/M, u	$\left \right $	13.3		C.CI
	Loc	PM10		nM	┞	54.7	207	+
	and a second	PM2.5 PI	_	3n W/Rn	-	C 7.07	23.6 5	+
-	+	CO	-	-	_	+	-	
	F		v ³	+	Ind	+	5 BDI.	
10/4	1	2 NUX	4 ³ 110/M ³	╉	1 00 5	+	27.5	
[oration ())	<u>ا</u>	202	f ³ ug/M ³	ł	146	L	15.51	
	S DMAIN		-W/gn	┟	57.1		C.8C	
	5 CMG	_	M/gn		27.6	0 00	20.0	
	8		M/gn	, ad	BUL	RDI	1000	
	NOX	6 . v	W/gn		1.17	30.3		
ocation (1)	SO ₂	5 M 43	INT/Rn	14.6	A.F.	14.6		
Ĭ	PM10	110/M3	1	563		54.2		
		" Man	+	28.6		6.0		Timit
\vdash	-	30	1	1.18 2		.18 3	RDI - Below Deterter	Jelectable L
	NO. Date			13.1		1.17	Ralow F	TMODO

(Lupuel)

Sumitabh Dwivedi Manager- Environment Prism Johnson Ltd. Satna (M.P.)

Sr. General Manager Manoj Kumar K

sr. General Manager Prism Johnson Ltd. Satna (M.P.) AIR QUALITY MONITORING REPORT FOR MINES MONTH - OCTOBER YEAR-2018

> NAME & ADDRESS OF FACTORY -

VILLAGE: MANKAHARI, HINAUTI & SIJAHATA PRISM CEMENT LIMESTONE MINES DISTT : SATNA (M.P.)- 485111 PRISM JOHNSON LTD POST : BATHIA

Sumitabh Dwivedi

NAME OF PERSON PREPARED THE REPORT

2

AMBIENT AIR QUALITY MONITORING

ŝ

2. DISTANCE FROM FACTORY

1. DURATION

LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village LOCATION (1) - SW (BP No. 18) 8X3=24Hrs.

3. WIND DIRECTION

MENTIONED IN THE TABLE

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			Location (1	(Innetian	(0)												
TWIU 3O2 NOX CO PM2.5 PM10 SO2 NOX CO PM2.5 NOX CO PM2.5 PM10 SO2 NOX CO PM2.5 PM13 UGM3	Date	S CING	DIAIO	00					FOCALIOI	(7)				Location (3	12			,			Ī	
ug/M ³ <t< th=""><th></th><th>C</th><th>LIMIU</th><th>202</th><th>NON</th><th>00</th><th>PM2.5</th><th></th><th>-</th><th>-</th><th></th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th>Y Y</th><th>ocation (4)</th><th></th><th>5</th><th>Wind</th></t<>		C	LIMIU	202	NON	00	PM2.5		-	-		-	-					Y Y	ocation (4)		5	Wind
27.8 57.5 15.2 25.6 BDL 26.9 60.6 14.6 25.6 BDL 21.1 52.8 12.2 18.0 BDL 24.3 ug/M ³		"W/Bn	ug/M3	ug/M ³	ug/M ³	ug/M ³	ug/M ³							SO2	XON	CO	PM2.5	-	so,	NOX		Direction
28.7 59.4 14.5 27.0 BDL 26.9 60.6 14.6 25.6 BDL 21.1 52.8 12.2 18.0 BDL 24.3 52.6 13.5 19.4 BDL 21.1 52.8 12.2 18.0 BDL 24.3 52.6 13.5 19.4 BDL think the third that the the third that the third that the the third tha	8.10.2018	27 S	575	0.51			,	t	╉	+	-	-	'M/gn	"W/Bn	ug/M ³	ug/M ³	110/M ³	-	Ar3	A c3		10000000
28.7 59.4 14.5 27.0 BDL 27.3 58.5 15.2 27.0 BDL 22.8 54.1 11.0 18.0 BDL 24.3 52.6 13.5 19.4 BDL think		2.14	0.10	7.01	9.62	BDL	26.9	-			-	-					D	man	INIAn	INI/Bn	_W/Bn	From
Limit	2.10.2018	28.7	59.4	14.5	27.0	IUR	020	+	-	+	+	+	52.8	12.2	18.0	BDL	24.3	52.6	13.5	19.4	PDI	CUL
11.0 18.0 BDL 25.0 53.8 13.3 20.6 BDL						1000	C.14	C.0C	-				1 75	011	10.01						TIT	MC
	IOW Detectat	ole Limit											1110	0.11	10.0	BUL	25.0	53.8	13.3	20.6	RDI	CUIV

(Supindoho

Manager- Environment Prism Johnson Ltd. Satna (M.P.) Sumitabh Dwivedi

Sr. General Manager Manoj Kumar Kasl

Prism Johnson Ltd. Satna (M.P.)

			No. 14) of ML area		Location (4) Wind PM2.5 PM10 SO ₂ NOX OD Direction ug/M ³ ug/M ³ ug/M ³ ug/M ³ ug/M ³ rom 23.7 43.7 12.2 17.5 BDL NW 21.3 53.3 13.3 19.4 BDL SE
	ONE MINES , HINAUTI & SIJAHATA \$5111		8X3=24Hs. LOCATION (1) - SW (BP No. 18) LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (2) - Near Mankahari Village LOCATION (4) - Near Hinout Village	BLE	Location (3) Location (3) SO2 NOX CO ug/M ³ ug/M ³ ug/M ³ 10.8 16.2 BDL 11.0 17.7 BDL
REPORT FOR MINES R YEAR-2018	PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST : BATHIA DISTT : SATNA (M.P.)- 485111	Sumitabh Dwivedi	8X3=24Hrs. LOCATION (1) - SW (BP No. 18) LOCATION (2) - Near Western side ML LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouri Village	MENTIONED IN THE TABLE	PM2.5 PM10 S ug/M³ ug/M³ ug 21.9 46.5 11 20.8 52.2 1
AIR QUALITY MONITORING REPORT FOR MINES MONTH - SEPTEMBER YEAR-2018			an an		Location (2) Control Control PM10 SO2 NOX CO ug/M ³ ug/M ³ ug/M ³ ug/M ³ 46.7 13.9 22.9 BDL 58.1 14.2 25.2 BDL
					NOX CO PM2.5 ug/M ³ ug/M ³ ug/M ³ 24.3 BDL 25.2 25.4 BDL 22.6
	SS OF FACTORY	NAME OF PERSON PREPARED THE REPORT	AMBJENT AIR QUALITY MONITORING 1. DURATION 2. DISTANCE FROM FACTORY	NO	Location (1) PM10 SO2 ug/M³ ug/M³ 48.4 14.2 57.1 15.2
	I NAME & ADDRESS OF FACTORY	2 NAME OF PERSO	 3 AMBLENT ALR QUALITY MONI 1. DURATION 2. DISTANCE FROM FACTORY 	3. WIND DIRECTION	Si PM2.5 No. Date PM2.5 No. Date PM2.5 1 06.09.2018 26.3 2 22.09.2018 27.5 BDL - Below Detectable Limit PM2.5

) 4

Wielde Sumitabh Dwivedi

Manager- Environment Prism Johnson Ltd. Satna (M.P.)

(

Manoj Kumăr Kashyab Sr. General Manager Prism Johnson Ltd. Satna (M.P.)

AIR QUALITY MONITORING REPORT FOR MINES MONTH - AUGUST YEAR-2018

NAME & ADDRESS OF FACTORY ----

VILLAGE: MANKAHARI, HINAUTI & SIJAHATA PRISM CEMENT LIMESTONE MINES DISTT : SATNA (M.P.)- 485111 PRISM JOHNSON LTD POST : BATHIA

Sumitabh Dwivedi

AMBIENT AIR QUALITY MONITORING 2. DISTANCE FROM FACTORY I DURATION

3. WIND DIRECTION

NAME OF PERSON PREPARED THE REPORT

C1 ...

LOCATION (1) - SW (BP No. 18) 8X3=24Hrs.

LOCATION (2) - Near Western side ML boundary (Pillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinouti Village

MENTIONED IN THE TABLE

		Wind		lirection	From	T	SE	SW	
	ł	_	4		M'M'	ł	BDL	BDL	
			NOV			╀	I6.2 B	17.7 B	
		n (4)	-		M' ug/M		9 -		
		Location (4)	0 80.		M/gu		2	10.8	
			5 PM10		M/gu		41.0	55.6	
			PM2.5	5 V	W/gn	10 5	10.0	22.5	
			00	STATES	Initian	BDI	101	BDL	
			NON	5 May 20	-	147		13.5	
	(C) unition (3)	C) House	SO ₂	, M/an		6.6	00	88	
	1	E	PMIO	ug/M'	I	45.1	62 6	0.00	
			C.2MY	ug/M.		19.2	5 81	1.0.1	
ł		00		I W/Bn	1	BUL	BDI	2	
		NON		n wigh		+	20.2		
	Location (2)	SO. N	~	-	c c c 1	+	13.3 2		
	Locat	PM10 S		IAL Sn III	515	+	49,9 1.		
	$\left \right $	-	A ³ no/M	t		+	-		
L	+	PM2.5	Wan		21.0	-	26.5		
		00	ug/M ³		BDL		BUL		
		NON	"M'Bn		23.1	c * c	C*7		
-ocation (1)	en l	ŝ	,W/gn		6.61	C 71	!		
Lo	DAILO		'M/ân	0 01	47.0	521			
	PN12 S D			727	+			mit	
_		_	W/gu		1	18 25.0	at a state of the	ciectable L	
	Date			09 08 18		26.08.18	BDI - Rolow Datasetti - 1	6	
N	No.			-	1	1	BDI		

Prism Johnson Ltd. Satna (M.P.) Puncet M Tripathi Head - Environment

- melol Sumitabh Dwivedi -

Manager- Environment

Prism Johnson Ltd. Satna (M.P.)

AIR QUALITY MONITORING REPORT FOR MINES MONTH - JULY YEAR-2018

1 NAME & ADDRESS OF FACTORY

PRISM JOHNSON LTD PRISM CEMENT LIMESTONE MINES VILLAGE: MANKAHARI, HINAUTI & SIJAHATA POST : BATHIA DISTT : SATNA (M.P.) - 485111

Sumitabh Dwivedi

NAME OF PERSON PREPARED THE REPORT

2

AMBIENT AIR QUALITY MONITORING

m

2. DISTANCE FROM FACTORY

I. DURATION

3. WIND DIRECTION

8X3=24Hrs LOCATION (1) - SW (BP No. 18) LOCATION (2) - Near Western side ML boundary (Fillar No. 14) of ML area LOCATION (3) - Near Mankahari Village LOCATION (4) - Near Hinoui Village

MENTIONED IN THE TABLE

T		the second second	Location (1	_			-	(C) aniton						The second s				1000			
Date	> CMG	DIAIO	00				I	הרמווחוו (ב				Ĺ	Location (3)							ŀ	
	C-7IM I	LINIU	202	NOX	00	PM2.5	PMI0	SO.	NOV	00		1		ŀ		ŀ	Lo Lo	Location (4)			Wind
	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ug/M ³	ue/M ³	eM/au	EMA	even a	C.2M7	PMIO		XON	co Co	PM2.5	PMI0	SO ₂	XON	CO	Direction
08.07.18	26.2	57.6	14.6	27.7	ICIA	276	103		1.1.6.	w/gn	IM/Bn	M/gn	'M/gn	'W/gn	ug/M ³ us	ug/M ³	From				
24.07.18	23.7	51.8	14.7	0 00		0.14	1.00	7.01	25.9	BDL	20.7	53.4	12.2	18.2	BDL	23.6	54.8	13.0	╀		HIOLY
1		2	7.14	0.02	BUL	25.2	50.9	15.5	27.0	BDI	10.4	523	0.11				2	6.01	-	BUL	SE
v Detecté	BDL - Below Detectable Limit									100	1.51	0.70	0.11	C.11	BDL	21.9	52.8	12.2	22.1 F	BDL	MS

Purcet M. Tripathi Head - Environment

Prism Johnson Ltd. Satna (M.P.)

Sumitabh Dwivedi Manager- Environment Prism Johnson Ltd. Satna (M.P.)

Lieo

CV

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi (Valid Upto 02.01.19)

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/767/11/18 TEST REPORT ISSUE DATE: 05.12.2018

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Cement Limited
Address of the Compan	y: Village Mankahari,
a del contra se analasi da sera	Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 24.11.2018
Date of Receiving	: 26.11.2018
Date of Analysis	: 26.11.2018 to 05.12.2018
Source of Sample	: Plant Site - Bore Well
Sample ID Code	: ELW - 8754

SL No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STAND 10500:1991()	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	АРПА, 23 rd Ed. 2017, 2150 В	Agrecable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	BDL	1 - 100	1.0	5.0
5.	рН	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.24	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017, 2540-C	547.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017, 2320 A+ B	116.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017, 2340 A+C	228.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	54.4	5-1000	75.0	200,0
10,	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	22.35	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017, 4500 CI A+B	46.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23 rd Ed. 2017, 4500-C	0.28	0.05-10	1.0	1.5
13.	Sulfate as SO4 (mg/l)	APHA, 23" Ed. 2017, 4500-SO42 E	136.0	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500-NO5 B	16.0	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL.	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.20	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL.	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL.	0.02-5	0,02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as IIg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL.	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	0.23	0.2 - 10	0.5	, 1.0
25.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017 (3111-A+B)	BDL.	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-CI B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H2S (mg/l)	APHA, 23rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	fodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500 - 1B	BDL	0.1-10	•	
29.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.19	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, B+C	Absent	1.8	0.05	Absent
31.	E.coli (Nus/100)	APHA, 23rd Ed. 2017, B+E	Absent	1.8	Absent	Absent

*The result are related only to item tested.

BDL = Below Detection Limit molarono,

Analyst

Ecomenta nzed sig Flat No.-8 2nd Floor, Arif Chamber-V

Sector-44, Miganj, Lucknuw-226024 Phi-2740202, Pax:2713726

Quality Manager

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi (Valid Upto 02.01.19)

FORMAT NO. ECO/QS/FORMAT/09 TEST

TEST REPORT NO:ECO LAB/DW/767/11/18 TEST REPORT ISSUE DATE: 05.12.2018

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Cement Limited
Address of the Compan	y : Village Mankahari,
	Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 24.11.2018
Date of Receiving	: 26.11.2018
Date of Analysis	: 26.11.2018 to 05.12.2018
Source of Sample	: PCL Colony Supply Water - Bore Well
Sample ID Code	: ELW -8758

SI. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STAND 10500:1991(1	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4,	Turbidity as (NTU)	APHA, 23 rd Ed. 2017, 2130-A+B	BDL.	1 - 100	1.0	5.0
5.	pH	APHA, 23rd Ed. 2017, 4500H+ A+B	7.48	2.0 -12	6.5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017, 2540-C	656.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017, 2320 A+ B	176.0	5-1500	200	600
8,	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017, 2340 A+C	332.0	5-1500	200.0	600,0
9,	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	91.2	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	25.27	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017, 4500 CI A+B	74,0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017, 4500-C	0.33	0.05-10	1.0	1.5
13.	Sulfate as SO ₄ (mg/l)	APHA, 23rd Ed. 2017, 4500-SO42 E	134.0	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO ₂ (mg/l)	APHA, 23 rd Ed. 2017, 4500-NO3' B	13.80	5.0 - 100	45.0	No Relax.
15,	Manganese as Mn (mg/l)	APHA, 23" Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.26	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL.	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 ^{1d} Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23 rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23 rd Ed. 2017, 3111 - A +B	BDL.	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDI.	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	BDL	0.2 - 10	0.5	0.1
25,	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017 (3111-A+B)	BDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017. 4500-CI B	BD1.	0.5-10	0.20	1.0
27.	Sulphide as H ₂ S (mg/l)	APHA, 23*6 Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	lodide as I (mg/l)	APHA, 23rd Ed. 2017, 4500 - IB	BDL	0.1-J0		
29.	Iron as Fe (mg/l)	APHA, 23" Ed. 2017, 3500 Fe B	0.21	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23 rd Ed. 2017, B+C	BDL	1.8	0.05	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, B+E	BDL	1.8	Absent	Absent

*The result are related only to item tested.

BDL = Below Detection Limit

unduan? Analyst

SU. Authorized signatory . Flat No -8 2nd Floor, Arit Chamber-V

Sector-H, Aliganj, Lucinow-226024

Quality Manager

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi (Valid Upto 02.01.19)

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO:ECO LAB/DW/767/11/18 TEST REPORT ISSUE DATE: 05.12.2018

TEST REPORT OF DRINKING WATER*

Name of the Company	:	M/s. Prism Cement Limited
Address of the Company		
		Tehsil Rampur Baghelan
		Distt.Satna (M.P.)
Sampling Method	:	APHA/ IS: 3025
Sample Collected by	:	Mr.Maan Singh
Sample Quantity	;	As per requirement.
Date of Sampling	;	24.11.2018
Date of Receiving	•	26.11.2018
Date of Analysis	:	26.11.2018 to 05.12.2018
Source of Sample		Mines Site Office
Sample ID Code	:	ELW-8759

SL No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STAND 10500:1991(1	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2,	Odour	APHA, 23 rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3,	Taste	APHA, 23rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	BDL	L - 100	1.0	5.0
5.	pH	APHA, 23rd Ed. 2017, 4500H+ A+B	7.20	2.0 -12	6.5-8.5	No Relax.
б.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017, 2540-C	450.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017, 2320 A+ B	128.0	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017, 2340 A+C	228.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 rd Ed. 2017, 3500 Cn A+B	65.6	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA. 23rd Ed. 2017, 3500 Mg A+B	17.49	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017, 4500 CI A+B	36.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017, 4500-C	0.40	0.05-10	1.0	1.5
13.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017, 4500-SO42 E	45.0	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500-NO3 B	15.0	5.0 - 100	45.0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL.	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL.	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23rd Ed. 2017, 3111 - A +B	BDL.	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 234 Ed. 2017, 3111 A+B	BDL.	0.05-5	0.05	1.5
24.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	0.23	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017 (3111-A+B)	BDL.	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H2S (mg/l)	APHA, 23rd Ed. 2017, Reprint 2007	BDL.	0.04-10	0.05	No Relax
28.	lodide as I (mg/l)	APHA, 23rd Ed. 2017, 4500 - IB	BDI.	0.1-10		
29.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.20	0.02-50	0.3	No Relax.
30,	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, B+C	BDL	1.8	0.05	Absent
31.	E.coll (Nos/100)	APHA, 23rd Ed. 2017, B+E	BDL.	1.8	Absent	Absent

*The result are related only to item tested.

Analyst

Ecomen Laboratory St. Ltd. Flat No.-8 2nd Floor, Aril Chamber-V

Sector-H, Aligani, Lucknow-226024

31115

DI. 7

for laying Quality Manager

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi (Valid Upto 02.01.19)

FORMAT NO. ECO/QS/FORMAT/09 TEST REPORT NO: ECO LAB/DW/767/11/18 TEST REPORT ISSUE DATE: 05.12.2018

TEST REPORT OF DRINKING WATER*

Name of the Company	: M/s. Prism Cement Limited
Address of the Company	: Village Mankahari,
	Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APHA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 24.11.2018
Date of Receiving	: 26.11.2018
Date of Analysis	: 26.11.2018 to 05.12.2018
Source of Sample	: Hinauta Village - Bore Well
Sample ID Code	: ELW-8763

SI. No.	TESTS	PROTOCOL	RESULT	Detection Range	INDIAN STAND 10500:1991(1	
					Desirable	Permissible
1.	Colour (Hazen unit)	APHA, 23rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2,	Odour	APHA, 23rd Ed. 2017, 2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3,	Taste	APHA, 23rd Ed. 2017, A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	<1.0	1 - 100	1.0	5.0
5.	рН	APHA, 23rd Ed. 2017, 4500H+ A+B	7.30	2.0 -12	6,5-8.5	No Relax.
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017, 2540-C	364.0	5 - 5000	500	2000
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017, 2320 A+ B	140.0	5-1500	200	600
8.	Total Hardness as CaCO3 (mg/l)	APHA, 23rd Ed. 2017, 2340 A+C	248.0	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23 ⁴³ Ed. 2017, 3500 Ca A+B	62.4	5-1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	22.35	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23 ¹⁶ Ed. 2017, 4500 Cl A+B	56.0	5-1000	250.0	1000.0
12.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017, 4500-C	0.33	0.05-10	1.0	1.5
13.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017, 4500-SO42 E	88.0	1.0 -250	200.0	400.0
14.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500-NO3 B	17.5	5.0 - 100	45,0	No Relax.
15.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.1-5	0.10	0.30
16.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.21	0.02-50	5.0	15
17.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01	No Relax.
18.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.002-2	0.003	No Relax
19.	Nickel as Ni (mg/l)	APHA, 23 rd Ed. 2017, 3111 A+B	BDL.	0.02-5	0.02	No Relax
20.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01	0.05
21.	Total Chromium as Cr (mg/l)	APHA, 23rd Ed. 2017, 3111 - A +B	BDL	0.04-10	0.05	No Relax
22.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL.	0,001-1	0.001	No Relax.
23	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.05	1.5
24,	Boron as B (mg/l)	APHA, 23 rd Ed. 2017, 4500 B A+C	0.24	0.2 - 10	0.5	1.0
25.	Aluminium as Al (mg/l)	APHA, 23 rd Ed. 2017 (3111-A+B)	RDL	1.0-100	0.03	0.2
26.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-C1B	BDL	0.5-10	0.20	1.0
27.	Sulphide as H2S (mg/l)	APHA, 23rd Ed. 2017, Reprint 2007	BDL	0.04-10	0.05	No Relax
28.	lodide as I (mg/l)	APHA, 23 rd Ed. 2017, 4500-1B	BDL	0.1-10	*	
29.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.15	0.02-50	0.3	No Relax.
30.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, B+C	BDL	1.8	0.05	Absent
31.	E.coli (Nos/100)	APHA, 23 rd Ed. 2017, B+E	BDL	1.8	Absent	Absent

*The result are related only to item tested.

BDL = Below Detection Limit Analyst

Authorized signatory Ecomen Laboratories Pvt. Ltd. Flat No -8 2nd Floor, Arif Chamber-V Sector-H, Aliganj, Lucknow-226024 Ph.-2746282, Fax:2745726

lan

Quality Manager

NOISE MONITORING REPORT

MONTH – NOVEMBER 2018

1. Name and address of Factory

: **PRISM JOHNSON LTD. Prism Cement Limestone Mines** Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report

: Sumitabh Dwivedi

3. Details of noise monitoring

Sl.No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	15.11.18	61.83	50.63
2	Near Western side ML boundary (Pillar No. 14) of ML area	15.11.18	60.26	47.3
3	Mankahari Village	15.11.18	51.7	16.1
4	Hinouti village	15.11.18	50.3	46.4

:-

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager

NOISE MONITORING REPORT

MONTH – OCTOBER 2018

1. Name and address of Factory

: **PRISM JOHNSON LTD. Prism Cement Limestone Mines** Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report

: Sumitabh Dwivedi

3. Details of noise monitoring

SI.No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	22.10.18	61.0	51.26
2	Near Western side ML boundary (Pillar No. 14) of ML area	22.10.18	62.2	51.76
3	Mankahari Village	22.10.18	52.9	46.13
4	Hinouti village	22.10.18	51.1	45.36

(

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager

:-

NOISE MONITORING REPORT

MONTH – SEPTEMBER 2018

1. Name and address of Factory

: **PRISM JOHNSON LTD. Prism Cement Limestone Mines** Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report

Sumitabh Dwivedi

3. Details of noise monitoring

(

SI.No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	22.09.18	64.5	56.1
2	Near Western side ML boundary (Pillar No. 14) of ML area	22.09.18	65.0	55.0
3	Mankahari Village	22.09.18	53.7	48.5
4	Hinouti village	22.09.18	55.8	48.1

:

:-

Sumitabh Dwivedi Manager – Environment

Manoj Kumar Kashyap Sr. General Manager

NOISE MONITORING REPORT

MONTH-AUGUST 2018

1. Name and address of Factory

: **PRISM JOHNSON LTD. Prism Cement Limestone Mines** Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report

Sumitabh Dwivedi

3. Details of noise monitoring

 \bigcirc

Sl.No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	09.08.18	63.1	53.1
2	Near Western side ML boundary (Pillar No. 14) of ML area	09.08.18	64.3	56.0
3	Mankahari Village	09.08.18	56.1	48.8
4	Hinouti village	09.08.18	57.3	49.1

:

:-

Puneet M. Tripathi Head - Environment Prism Johnson Ltd. Satna (M.P.)

Sumitabh Dwivedi Manager (Environment) Prism Johnson Ltd. Satna (M.P.)

NOISE MONITORING REPORT

MONTH-JULY 2018

1. Name and address of Factory

: PRISM JOHNSON LTD. Prism Cement Limestone Mines Village- Mankahari, Hinauti & Sijahata Post - Bathia Distt - Satna (M.P)- 485111

2. Name of person prepared the report

: Sumitabh Dwivedi

3. Details of noise monitoring

SI.No	Locations	Date of monitoring	Noise level in dB(A) (Day Time)	Noise Level in dB(A) (Night Time)
1	SW (BP No. 18)	17.07.18	65.2	55.6
2	Near Western side ML boundary (Pillar No. 14) of ML area	17.07.18	66.7	58.1
3	Mankahari Village	30.07.18	55.5	49.0
4	Hinouti village	30.07.18	56.8	50.6

:-

Puneet M. Tripathi Head - Environment Prism Johnson Ltd. Satna (M.P.)

Sumitabh Dwivedi Manager (Environment) Prism Johnson Ltd. Satna (M.P.)


Confidential

CSIR - CENTRAL INSTITUTE OF MINING & FUEL RESEARCH (Council of Scientific & Industrial Research) Barwa Road, Dhanbad – 826 015

Report on

Study and advice for optimization of blast design parameters at Prism Cement Limestone Mine of M/s Prism Cement Limited to control ground vibration, air overpressure/noise and flyrocks within safe limits for the safety of houses/structures in the periphery of the mine when blasting is to be performed at 50 m and beyond

PROJECT NO.: CNP/4491/2016-17

FEBRUARY 2017

CSIR - CENTRAL INSTITUTE OF MINING & FUEL RESEARCH (Council of Scientific & Industrial Research) Barwa Road, Dhanbad – 826 015

REPORT ON

Study and advice for optimization of blast design parameters at Prism Cement Limestone Mine of M/s Prism Cement Limited to control ground vibration, air overpressure/noise and flyrocks within safe limits for the safety of houses/structures in the periphery of the mine when blasting is to be performed at 50 m and beyond

BY

Dr. M. P. Roy,	Principal Scientist & Project Leader
Dr. C. Sawmliana,	Principal Scientist
Shri Vivek K Himanshu,	Scientist
Shri R. S. Yadav,	Sr.Technical Officer
Shri P. Hembram,	Technical Assistant
Dr. P. Pal Roy,	Outstanding Scientist & HORG
Dr. P. K. Singh,	Director

PROJECT NO.: CNP/4491/2016-17

FEBRUARY 2017

NOTE

This report is meant for internal use of the sponsor of the study and it should not be published in full or part by the sponsor. It should not be communicated or circulated to outside parties except concern departments. However, CSIR-CIMFR reserves the right to publish the results of investigation for the benefit of the mining industry.

The recommendations are based on the results of investigation carried out at Prism Cement Limestone Mine of M/s Prism cement Limited. It is hoped that the recommendations will be implemented to get optimum results without hampering production, productivity and safety of the mine. The recommendations are guidelines, which should be implemented in letter and spirit.

Since, the day-to-day blasting operations are not in the control of CSIR-CIMFR, the research team will not be held responsible for any untoward incident caused due to blasting.

SIGNATURE OF THE PROJECT PROPONENTS

Mura K

(Dr. M. P. Roy) Principal Scientist Project Leader

Pal Roy

(Dr. P. Pal Roy) \ Outstanding Scientist & HORG Project Co-ordinator

CSIR-CIMFR AUTHORISED SIGNATORIES

(Dr. V. K. Kalyani) Sr. Principal Scientist & HOS Project Monitoring & Evaluation Cell

(Dr. R. V. K. Singh) Chief Scientist & HORG Business Development & industrial Liaison

Contents

Page N	OS.
--------	-----

Executive summary	1								
1. Introduction	3								
2. Location and geology	3								
3. Instrumentations	3								
4. Blasting details									
5. Analyses of recorded vibration data	5								
5.1 Frequency of blast vibration	6								
5.2 Structural responses to ground vibration and their natural frequencies	9								
6. Existing vibration standard and criteria to prevent damage									
7. Air over-pressure/Noise	10								
8. Flyrocks	11								
9. Recording of in-the -hole velocity of dctonation (VOD) of explosives	11								
10. Blast delay optimization with the help of signature blast	12								
11. Human response to blasting	14								
12. Results and discussions	14								
13. Conclusions and recommendations	15								
Acknowledgement	16								
Annexure									

EXECUTIVE SUMMARY

This report relates to the study conducted by CSIR-Central Institute of Mining & Fuel Research (CIMFR), Dhanbad to study and advice for optimization of blast design parameters at Prism Cement Limestone Mine of M/s Prism Cement Limited, Satna to control ground vibration within safe limits for the safety of structures in the periphery of the mine with improved production and productivity. The study involved trials with varying blast designs and charging patterns, monitoring of ground vibration, air over-pressure/noise at various locations in the periphery of the mines. The ejections of flyrock from blasting operations were also monitored. The results of investigation, analyses of data and recommendations, made thereof, are summarised below:

- Fifteen blasts were conducted at different benches of the Prism Cement Limestone Mine of M/s Prism Cement Limited, Satna and 60 blast induced ground vibration data were recorded in the periphery of the mine.
- Maximum vibration recorded from production hole blast was 31.0 mm/s at 50 m. The blast was conducted at 15 no. Goyal face of Prism Cement Limestone Mine. The total explosive weight and explosive weight per delay were 710 kg and 50 kg respectively.
- The maximum air over-pressure was recorded from the blast conducted at 15 no. Goyal face on 26.12.16. The recorded air over-pressure was 137.8 dB(L) at 100 m distance from face. In this blast, explosives detonated in a blasting round and explosives weights per delay were 1125 and 75 kg respectively.
- There was no ejection of flyrock in any of the blast. The blasts were initiated with Nonel initiating system and electronic initiation system from the bottom of the hole and experimented blast designs ensured non-ejection of flyrocks.
- All the recorded vibration data were well within the safe limit at the houses/structures concerned. The dominant peak frequencies of ground vibrations were in the range of 11.4 to 129 Hz. FFT analysis of blast vibration frequencies confirmed that concentration of frequencies is in band of 13.3 40.3 Hz. So, the safe level of vibration has been taken as 10 mm/s for the safety of houses/structures of the surrounding villages as per DGMS standard.
- Propagation equation for the prediction of blast vibration has been established and is given as Equation 1. The permissible explosive weight per delay may be computed from the Equation to maintain vibration within safe limit for distances of houses/structures concerned. For convenience, the recommended explosive weight per delay has been computed and is given in Table A3.

- Attempts were made to record the vibration from 50 to 250 m in most of the blasts and accordingly the explosives to be detonated in the delay and total amount of explosives to be fired has been computed and is given in the text in view of future blasting operations at 50 m and beyond.
- The delay interval between the holes in a row should be 17 ms whereas between the rows, it should be 65 ms or more depending upon the number of rows and effective burden. If the numbers of rows are more than two, the delay interval between rows should be increased by 15% in successive rows.
- It is recommended that the existing Nonel initiation system should be continued in the blasting operations. The sub-grade drilling should be 0.3 to 0.5 m for a blasthole depth of 6 to 7 m and should be initiated from the bottom of the hole.
- The recommended blast designs should be followed for day-to-day blasting operations for safe and efficient blasting operations. The blast designs Annexure as Figures A1-A2, will also ensure the safety of the houses/structures, life of human beings and other property in the periphery of the mine.

1. Introduction

The Joint President- Commercial of M/s Prism Cement Limited entrusted CSIR-Central Institute of Mining & Fuel Research (CIMFR), Dhanbad, vide letter no. PCL/LOI/16-17/CIMFR/365 dated 06.12.2016 for a scientific study and advice for optimization of blast design parameters for deep hole blasting at Prism Cement Limestone Mine of M/s Prism Cement Limited, Satna to control ground vibration within safe limits for the safety of structures in the periphery of the mine with improved production and productivity.

The Rock Excavation Engineering (erstwhile Blasting Department) Research team of CSIR-Central Institute of Mining & Fuel Research, Dhanbad carried out field investigations during December 21-26, 2016. Altogether, fifteen blasts were conducted and blast induced ground vibration & air over-pressure/noise were monitored at various locations in the periphery of the Prism Cement Limestone Mine of M/s prism Cement Limited. The monitoring locations were back-side of the blast free face and in the left flank of the blast free face.

2. Location and geology

The Prism Cement Limestone Mine is situated at about 15 km North-East of Satna railway station. The mining lease area lies between longitude 80°57'31" to 80°58'28" East and Latitude 24°36'47" to 24°37'16" North. The limestone deposit of the mine falls in the Bhander series of Upper Vindhyan System and is Upper Vindhyan in age. The general topography of the area is without any remarkable relief and forms a more or less flat terrain with a general dip of approximately 2°- 6° towards South between S10°W and S5°E. The area is completely devoid of any forest and the topographic elevation varies from 312 m (north direction) to 300 m (south direction) above MSL.

The limestone deposit in the mine occurs in two horizontal bands separated by a shaley limestone. The Vindhyan formations are broadly classified into lower calcareous and an upper arenaceous facies. The Bhander limestone varying in thickness from about 5 to 15 m lies as a calcareous horizon in the upper arenaceous rocks. The Bhander Limestone deposit of the area is the dominant rock type and overlain by Sirbu shale (0 - 2 m thick). It is widely jointed with two sets of joints along and across strike. The overview of the Prism Cement Limestone Mine is presented in Photograph 1.

Photograph 1. The overview of Prism Cement Limestone Mine of M/s Prism Cement Limited.

3. Instrumentations

Blast induced vibrations were monitored by seismographs namely MiniMate Plus, MiniMate Blaster and MiniMate DS-077 (Made in Canada by M/s Instantel Inc.). MiniMate plus are eight as well as four channel seismographs provided with two/one tri-axial transducer(s) for monitoring vibration (in mm/s) and two/one channel(s) for monitoring air over-pressure/noise in dB(L). MiniMate Blaster and MiniMate DS-077 are four channel seismographs provided with one tri-axial transducer for monitoring vibration (in mm/s) and one channel for monitoring of air over-pressure/noise in dB(L). All the seismographs record vibration in three directions i.e. Longitudinal (L), Vertical (V) and Transverse (T). They also record principal frequency of vibration and compute the peak vector sum of the vibration.

Explosives and delay detonators must provide the energy and timing for the blasts used under specific blasting conditions. The DataTrapII data/VOD recorder of M/s MREL, Canada is used to document the VOD performance of the explosives and delay time of delay detonators during blasts to compare the actual VOD and delay time results to the published specification.

4. Blasting details

Fifteen blasts including fourteen production blasts and one signature hole blast were conducted on different benches of Prism Cement Limestone Mine. The number of blast holes detonated in production blasting varied from 14 to 84. The diameters of deep blast holes were 115 mm. The depth of blast holes varied from 2.5 to 6 m and the explosives loaded in a hole varied from 2.8 to 35 kg. The explosives weight per delay ranged between 2.8 to 96 kg. Total

explosive weight detonated in a round of production blast varied between 58.4 and 2678 kg. Out of fifteen trial blasts five were conducted using Nonel initiation system and rest 10 were blasted with the help of electronic initiation system. The vibration measuring distances varied from 50 to 250 m. Details of blast design parameters experimented during the period of investigation are given in Annexure as Table A1.

Vibrations were monitored in terms of peak particle velocity (PPV) that varied from 0.73 mm/s to 31.0 mm/s in case of production blast depending upon the distance of measuring transducers of seismographs from the blasting face and the amount of explosives detonated in particular delay of the blast. The recorded levels of air over-pressure ranged from 110.2 - 137.8 dB(L). Recorded blast induced ground vibrations and air over-pressure are presented in Annexure as Table A2.

The blast movement and ejection of rock, if any, were monitored for each blast. There was no ejection of flying fragments. Precaution was taken by using blasting mate on the blastholes. Photograph 2 depicts the charging of the 15 no. RPL bench and use of blasting mate at 7050 RIL blast face to prevent flyrock.

Photograph 2. The charging of the 15 no. RPL bench and use of blasting mate at 7050 RIL blast face to prevent flyrock.

5. Analyses of recorded vibration data

Ground vibrations data recorded were grouped together for statistical analysis. An empirical relationship has been established correlating the maximum explosive weight per delay (Q_{max} in kg), distance of vibration measuring transducers from the blasting face (R in m) and recorded peak particle velocity (v in mm/s). The established equation for the mine is:

$$v = 200.34 * \left(\frac{R}{\sqrt{Q_{\text{max}}}}\right)^{-1.126}$$
 (1)

Correlation co-efficient = 87.8 %

Where,

v = Peak particle velocity (mm/s) R = Distance between vibration monitoring point and blasting face (m) $Q_{max} =$ Maximum explosive weight per delay (kg)

The above equation is site specific and applicable only for Prism Cement Limestone Mine. It may be used to compute the maximum explosive weight to be detonated in a delay for distances of concern from the blasting site. The regression plot of vibration data recorded at their respective scaled distances is presented in Figure 1.

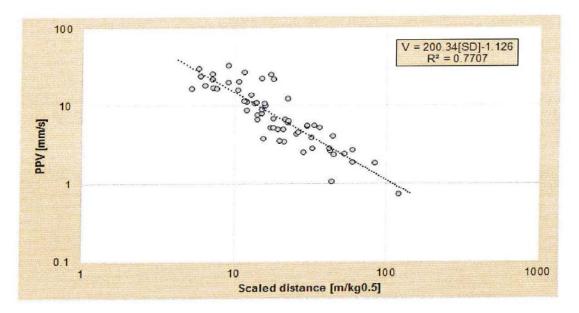


Figure 1. Regression plot of recorded PPV with their respective scaled distances.

5.1 Frequency of blast vibration

The dominant peak frequencies of ground vibrations recorded were in the range of 11.4 - 129 Hz whereas the most common range lies between 13.3 to 40.3 Hz. Most of the vibration measuring stations were on compact ground surfaces. The dominant peak frequency recorded at corresponding monitoring locations is presented in Figure 2. The blast wave signature recorded at Shankkar Ji temple of Hinauti village (Distance - 200 m; PPV – 5.29 mm/s) from the blast conducted at New Pit 01 bench of Prism Cement Limestone Mine is depicted in Figure 3 and its Fast Fourier Transform (FFT) analysis of frequency is shown in Figure 4. The blast wave signature recorded at the house of Shri Umesh Prasad from the blast conducted at 15 No. Goyal face bench is shown in Figure 4. Fast Fourier Transform (FFT) analysis of frequency of the vibration signature is presented in Figure 5. The Fast Fourier Transform (FFT) analysis of frequency vibrations recorded in blasting. The view of blast vibration monitoring in the periphery of the mine are shown in Photographs 3.

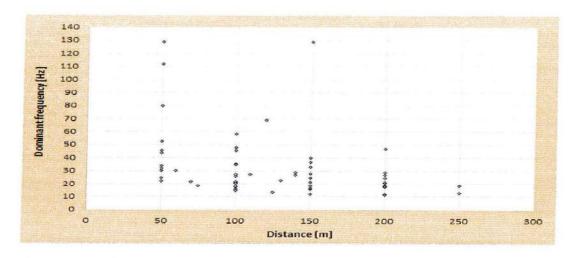


Figure 2. Plot of dominant frequency with respect to respective distances.

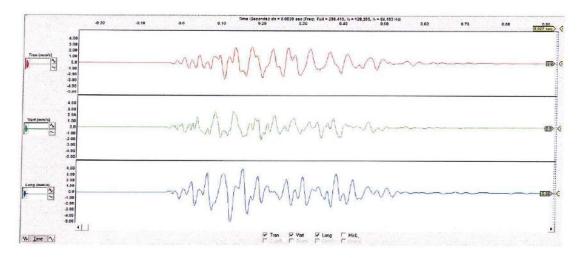


Figure 3. Blast wave signature recorded at Shankarji temple of Hinauti village from the blast conducted at New Pit 01 blastface of Prism Cement Limestone Mine.

Figure 4. FFT analyses of frequencies of vibration presented in Figure 3.

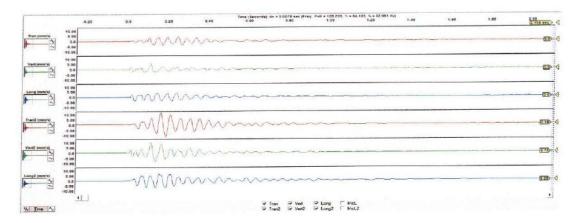


Figure 4. Blast wave signature recorded on the ground surface and roof of the house of Shri Umesh Prasad from the blast conducted at 15 No. Goyal face bench of Prism Cement Limestone Mine.

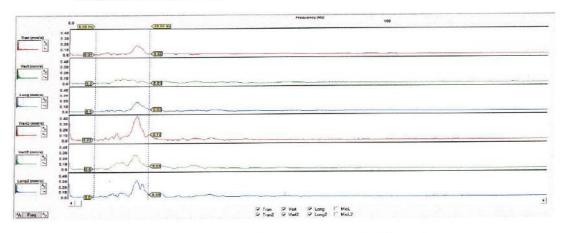
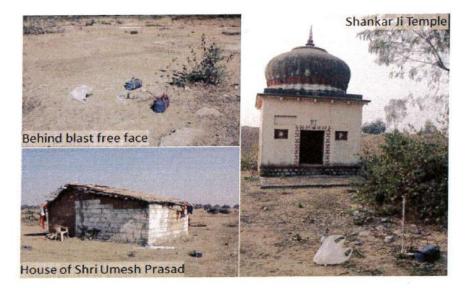



Figure 5. FFT analyses of frequencies of vibration presented in Figure 4.

Photograph 3. Monitoring of blast vibration at different locations in the periphery of the Prism Cement Limestone Mine.

5.2 Structural responses to ground vibration and their natural frequencies

The real cause of why people complain about blasting is structural response. All blast vibration complains is due to how much the house shakes, not how much the ground shakes. The ground motion resulting from blast induced waves is transmitted to the structure upside through the foundation, which causes the structure to vibrate. There are three factors of ground vibrations that determine how much structure vibrates. They are ground vibration amplitude, ground vibration duration and ground vibration frequency.

The responses of a few structures in the periphery of the mine was monitored. The recorded natural frequencies of the house of Shri Umesh Prasad was 21.3 Hz. The incoming blast vibration has frequency in the range of natural frequency of the houses and resonance occurred, the resultant amplitude of the vibration in the houses got amplified. The maximum amplification were recorded when incoming blast wave has dominant frequency very close to the natural frequency of the house. The process involved in determination of natural frequency is shown in Figure 6.

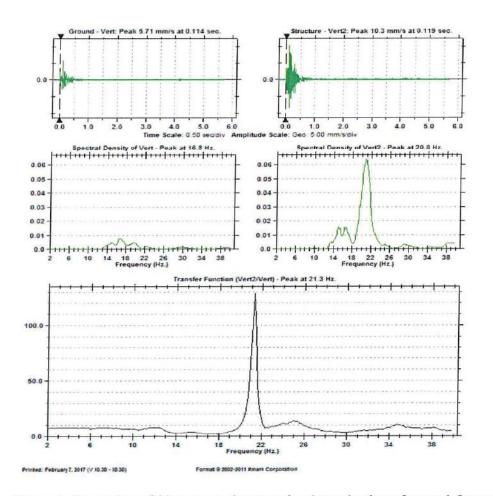


Figure 6. Processing of blast wave signature for determination of natural frequency of the house of Shri Umesh Yadav.

6. Existing vibration standard and criteria to prevent damage

Peak particle velocity (PPV) has been globally used in practice for assessment of blast induced damage to the structures. Different countries adopt different standards depending on their type of industrial/residential buildings. In India, presently DGMS technical circular 7 of 1997 is considered as vibration standard for the safety of surface structures in mining areas. The DGMS standard is given in Table 1.

Type of structure	Dominant excitation frequency, Hz									
	< 8 Hz	8-25 Hz	> 25 Hz							
(A) Buildings/structures not belong to the owner	•									
1. Domestic houses/structures (Kuchcha, brick & cement)	5	10	15							
2. Industrial buildings	10	20	25							
3. Objects of historical importance and sensitive structures	2	5	10							
(B) Buildings belonging to owner with limited sp	an of life									
1. Domestic houses/structures	10	15	25							
2. Industrial buildings	15	25	50							

Table 1. DGMS technical circular 7 of 1997 concerning to blast vibration standard in mm/s.

7. Air over-pressure/noise

Air overpressure in the mining or quarrying context is the superposition of a number of impulsive air pressures as a result of the detonation of explosive in the ground. Air overpressure can be measured in pressure unit as well as sound pressure level (SPL).

SPL (dB) = 20 log (p/p_o) Where, p = measured over-pressure in Pascal (pa)

 p_o = reference pressure level of the lowest sound that can be heard, i.e., zero dB = 2 x 10⁻⁵ pa.

United State Bureau of Mines (USBM) has correlated the damage due to air over-pressure. The recommended values are given below:

Over-pressure (dB)	Over-pressure (KPa)	Air Blast Effects
177	14	All windows break
170	6	Most windows break
150	0.63	Some windows break
140	0.20	Some large plate glass windows may break, desk and windows rattle
136	0.13	USBM interim limit for allowable air blast
126	0.05	Complaints likely

The maximum level of air over-pressure recorded was 137.8 dB(L) at 100 m due to blasting at 15 no. Goyal Face bench of Prism Cement Limestone Mine. In this blast 45 blastholes were loaded with 1125 kg of explosives and were fired with the explosives weight per delay of 50 kg. The threshold level of air over pressure/noise is 136 dB(L) as per USBM standard.

8. Flyrocks

Flyrocks are the undesirable ejection of rock particles projected beyond the normal blast area. It is generated when there is insufficient stemming, too much explosive energy for a fixed amount of burden, or poor delay timing pattern, or explosives loaded in voids, mud seams.

The primary means of controlling flyrocks is through proper blast design and optimum delay timing between two detonations. Any pattern which over-confines the explosives or one with insufficient stemming tends to cause material to be thrown up in the air rather than allowing any horizontal movement. None of the blasts ejected flying fragments. The detonation of blast was very ideal and achieved blasting face was without back breaks in most of the time. It is recommended to use blasting mate in sensitive areas for control of flyrock. It was demonstrated and experiment that stemming to burden ratio of 0.7 or more did not cause ejection of flying fragments. Hence, to reduce the generation of boulders from the top portion of the face, stemming length should be 0.7 times of burden.

9. Recording of in-the-hole Velocity of Detonation (VOD) of explosives

The performance of explosives depends upon a number of parameters and VOD is one of the important parameters. The detonation pressure associated with the reaction zone of detonating explosives is directly proportional to the square of its VOD. It is measured in the C-J plane, behind the detonation front, during propagation through the explosives column. The detonation pressure (P_d) can be estimated by the following formula.

$$P_{d} = \frac{1}{2} \rho_{e} (VOD)^{2} 10^{-6}$$

Where, P_d = Detonation pressure (MPa) ρ_e = Density of explosive (kg/m³) VOD = Velocity of detonation (m/s)

Uniform VOD is essentially required throughout the blast holes in the rock formations in order to produce sufficient detonation pressure to the borehole walls. Required booster is provided in the explosives column to maintain the VOD for the uniform breakage of rock. In-the-hole continuous velocity of detonation of explosives was recorded with the help of DataTrap II. The recorded in-the-hole VOD of site mixed emulsion (SME) explosives of M/s Indian Explosives Limited (Orica) was in the range of 5286.8 – 5399.7 m/s (Figure 7 & 8).

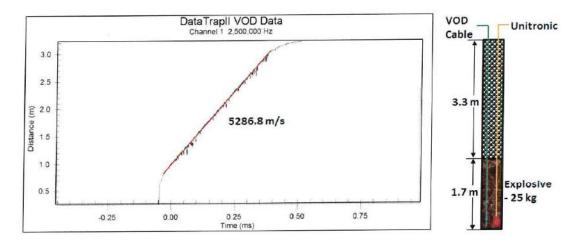


Figure 7. Trace of in-the-hole VOD of SME explosives of M/s Indian Explosives Limited.

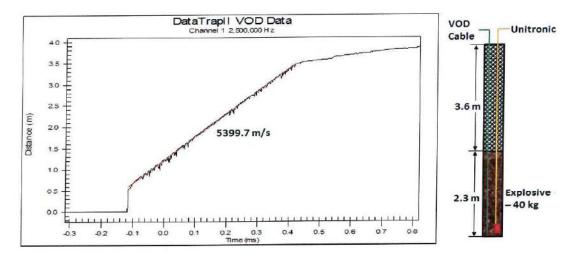


Figure 8. Trace of in-the-hole VOD of SME explosives of M/s Indian Explosives Limited.

10. Blast delay optimisation with the help of signature blast

The optimum blasts have the following objectives.

- Adequate rock fragmentation, swelling and displacement
- Control over the flyrocks and over breaks
- Minimum level of vibration and air blasts

The delay timing between the holes in a row and between rows plays fundamental role in fulfilment of these objectives. To address this issue a blast hole was drilled at 15 No. RPL bench. The blasthole was loaded with 30 kg of explosives and fired instantaneously without in-hole delay. The blast wave signatures were recorded at interval of 50 m at 2 locations. The attenuation characteristics of blast wave were documented. The typical time history of blast wave signature recorded at 50 m from the blast hole is presented in Figure 9. The frequency spectra of the signature blast was analysed. Linear superposition of the waves were done to simulate the waveform characteristics for multi-hole blasting. The analyses revealed that very

short delay times between the holes and very long delay intervals between the rows should be avoided. The analyses further concluded that the mean time needed to start the movement of rock face is 6.4-7.5 ms/m of effective burden. The delay interval between the successive rows should be 13.5-28.5 ms/m of effective burden. The blast designs were optimised considering the out put of linear superimposition techniques. The signature hole analyses table of blast is depicted in Figure 10. The recommended blast designs on the basis of the analyses are given in Annexure.

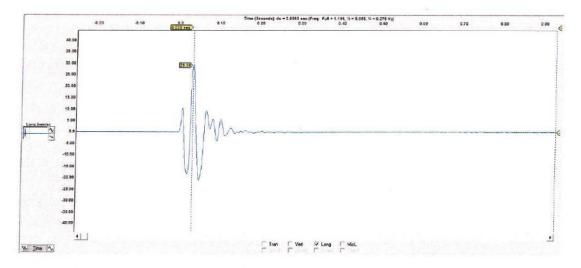


Figure 9. Time history of the signature blast in Longitudinal direction.

File	B	last Ti	ming	F	eak Partic	le Velocit	,	PVS	1	Dominant F	FT Freque	ncy	Up	per/Lower	Frequency	r Frequency Ratio					
[Double Click to view]	Dela	y Dela	e Row yDelay c(msec	Trans (mm/s)	Vert (mm/s)	Lang	Peak	Peak Vector Sun V	Trans (Hz)	Vert (Hz)	Long (Hz)	Peak (Hz)	Trans	Vert	Long	Peak					
2D1H16R100.8WP	1	16		19.70	18.40	22.70	22.70	26.50	61.4	61.5	59.3	61.5	0.202	12.000	0.194	12 000					
2D1H16R125.BWP	1	16	125	20.50	18.40	23.40	23.40	26.90	63.6	64.1	24.9	64.1	0.251	11,400	0.239	11,400					
2D1H16R130.8WP	1	16	130	21.00	19.10	23.30	23.30	27.50	61.4	62.3	61.3	62.3	0.065	3.660	0.068	3.660					
R2D1H16R95.8WP	1	16	95	19.80	20.60	24.30	24.30	28.00	63.0	63.3	62.6	63.3	0.061	3.020	0.053	3.020					
201H12R125.8WP	1	12	125	14.90	22.50	20.50	22.50	28.60	32.6	80.1	32.4	80.1	1.110	47.100	0.979	47,100					
R2D1H12R70.BWP	1	12	70	13.00	24.10	20.50	24.10	28.60	2.0	84.8	31.5	84.8	0.247	10.500	0.218	10.500					
2D1H12R120.8WP	1	12	120	13.30	23.10	25.00	25.00	28.80	33.8	83.1	33.3	83.1	0.823	30.600	0.703	30.600					
R2D1H12R75.BWP	1	12	75	12.90	25.70	20.50	25.70	28.80	2.0	80.4	24.1	80.4	1.060	44,900	0.960	44.900					
2D1H12R115.BWP	1	12	115	14.40	23.30	23.80	23.80	30.50	35.0	78.5	34.4	78.5	3.550	98,100	3,370	98.100					
R2D1H8R45.8WP	1	8	45	12.80	14.70	30.30	30.30	30.50	2.0	2.9	27.4	27.4	0.020	1.030	0.014	1.030					
R2D1H16R55.8WP	1	16	55	19.50	18.60	26.10	26.10	30.70	58.9	68.5	57.3	68.5	0.129	4.870	0.130	4.870					
2D1H16R60.8WP	1	16	60	26.60	26.20	22.00	26.60	31.10	64.5	65.1	35.3	65.1	0.198	9.600	0.186	9.600					
2D1H12R105.8WP	1	12	105	13.00	23.40	25.70	25.70	31.50	37.0	85.4	20.1	85.4	0.261	11.500	0.239	11.500					
201H12R110.BWP	1	12	110	14.10	23.00	26.20	26.20	31.90	36.1	81.6	35.5	81.6	1.050	43.200	0.948	43.200					
2D1H12R130.8WP	1	12	130	13.30	23.40	26.10	26.10	32.80	37.6	84.3	22.8	84.3	0.247	11.100	0.224	11.100					
2D1H12R65.BWP	1	12	65	20.70	22.50	26.40	26.40	32.90	32.9	78.5	32.3	78.5	0.614	26.900	0.551	26.900					
2D1H16R70.BWP	1	16	70	20.20	18.40	29.10	29.10	33.10	59.4	60.0	27.1	60.0	0.063	4.020	0.056	4.020					
12D1H8R100.BWP	1	8	100	13.90	14.50	31.80	31.80	33.10	30.3	129.0	30.0	129.0	0.024	1.390	0.023	1.390					
2D1H8R105.8WP	1	8	105	15.00	13.90	31.80	31.80	33.10	29.1	124.0	29.1	124.0	0.008	0.602	0.010	0.602					
2D1H9R110.BWP	1	8	110	14.60	14.30	31.90	31.80	33.10	29.0	129.0	28.0	128.0	0.035	2.090	0.031	2.090					
2D1H8R115.BWP	1	8	115	15.30	13.40	31.90	31.90	33.10	34.4	130.0	26.9	130.0	0.133	13.700	0.136	13.700					
2D1H8R120.8WP	1	8	120	14.40	13.50	31.80	31.80	33.10	32.9	125.0	32.5	125.0	0.029	1.140	0.021	1.140					
2D1H8R130.8WP	1	8	130	14.20	13.80	31.80	31.80	33.10	30.8	130.0	30.6	130.0	0.007	0.507	0.009	0.507					
R2D1H8R80.BWP	1	8	80	13.90	16.10	31.70	31.70	33.10	35.8	126.0	26.9	126.0	0.022	2.020	0.027	2.020					
R2D1H8R85.8WP	1	8	85	13.90	16.30	31.80	31.80	33.10	34.4	129.0	33.5	129.0	0.140	5.050	0.122	5.050					

Figure 10. Signature hole analysis for the blasthole on 15 no. RPL Site of Prism Cement Limestone Mine.

11. Human response to blasting

The tolerance and reactions of human beings to vibrations are important when standards are based on annoyance, interference, work proficiency and health. Human beings notice and react to blast induced vibrations at levels that are lower than the damage thresholds.

It is impossible to establish a vibration level where nobody will complain. There are always some persons in a population who will complain no matter how small the disturbance is. Several researchers recognized that the duration of the vibration was critical. Most evident was that a higher level could be tolerated if the event was of short duration. Consequently, steady state vibration data could not be realistically applied to blasting except for events that exceed several seconds duration.

12. Results and discussions

The maximum vibration recorded from the production blasts in terms of peak particle velocity (PPV) was 31.0 mm/s at 50 m on the ground surface behind the blasting face. The associated dominant peak frequency was 32.0 Hz. This magnitude of vibration was due to detonation of 710 kg of explosives in 28 holes drilled in three rows and fired with maximum charge weight per delay of 50 kg. The PPV recorded at 100 m from the same blast was 6.66 mm/s with dominant peak frequency of 15.0 Hz. Fast attenuation of ground vibration is recorded.

The vibrations recorded in the periphery of the mine were of low amplitude and short duration. The persistence of vibration was in most of the cases less than 1 second. A few recorded blast waveforms at different locations are given in the Annexure which indicates low amplitude and short duration blast events. The existing practice of blasting will not cause any damage to the houses and structures in the periphery of the mine.

The signature hole blast was conducted and ground vibration was recorded at a distance of 50 and 100 m. The ground vibration recorded at 50 m was 33.9 mm/s with dominant peak frequency of 30.3 Hz. The signature hole was of 5 m and charged with the 30 kg of explosive. Ground vibration recorded at 100 m was 22.1 mm/s with dominant frequency of 45.5 Hz. The analyses revealed that very short delay times between the holes and very long delay intervals between the rows should be avoided. The analyses further concluded that the mean time needed to start the movement of rock face is 6.4-7.5 ms/m of effective burden. The delay interval between the successive rows should be 13.5-28.5 ms/m of effective burden.

The dominant peak frequencies of vibrations recorded were in the range of 11.4 to 129 Hz. The FFT analyses of frequency of vibration revealed that the concentration of vibration energy is in the range of 13.3-40.3 Hz. Based on DGMS circular; the safe limit of vibration (PPV) for the houses of surrounding villages is thus, 10 mm/s. The maximum explosives to be fired in a delay for safety of residential houses at various distances from the blasting site

may be computed from the Equation 1. For ready references, the maximum permissible explosive weight per delay to be detonated in blast round has been computed and is Annexured as Table A3. The predicated PPV levels at various distances by detonation of explosives weight per delay of 10, 20, 30 and 50 kg are presented in Table A4.

The maximum air over-pressure recorded was 137.8 dB(L) at 100 m due to the blast conducted at 15 No. Goyal Face on 26.12.2016 by detonation of 1125 kg of explosives in 45 holes. The blasts initiated with Nonel initiation system and Unitronic electronic initiation system generate significantly lower level of air over-pressure compared to detonating fuse initiation system. There was no ejection of flyrock in any of the blasts.

The recorded vibration and air over-pressure data and subsequent analyses revealed that blasting might be performed at 50 m from the nearest house of the village with explosives weight per delay of 12.2 kg. The blast designs have been recommended for blasting operations to be conducted at 50 m and beyond from the nearest house of the concern villages or other structures. The recommended blast designs are given as Figures A1-A2. The recommended explosive weights per delay for various distances of the concern up to 300 m are computed and are presented in Table A3. The predicted peak particle velocities levels for detonation of various charge weight per delay are given in Table A4.

There were no ejections of flyrocks in any of the blast. The experimented blast designs ensured that there were no any ejections of flyrocks, although for more safety, blasting mates with sand bags were used for controlling the flyrocks.

13. Conclusions and recommendations

- Maximum vibration recorded from the production blast was 31.0 mm/s with associated dominant peak frequency of 32.0 Hz at 50 m from blasting site. The explosives weight per delay was 50.8 kg. The PPV recorded at 100 m from the same blast was 6.66 mm/s with dominant peak frequency of 15.0 Hz. Fast attenuation of vibration were encountered.
- The maximum air over-pressure recorded was 137.8 dB(L) at 100 m due to the blast conducted at 15 No. Goyal Face on 26.12.2016. In this blast, explosives detonated in a blasting round and explosives weight per delay were 1125 kg and 75 kg respectively. The Electronic initiation system and Nonel initiation system reduces the air over-pressure to a greater extent and improves the blasting performance too. There was no ejection of flyrocks in any of the blast.
- All the recorded data (blast vibrations, air overpressures and flyrocks) were well within the safe limit at the houses/structures concerned. The dominant peak frequencies of ground vibrations were in the range of 11.4 to 129 Hz. FFT analysis of blast vibration frequencies confirmed that concentration of frequencies is in band of 13.3-40.3 Hz. So, the safe level of vibration has been taken as 10 mm/s for the safety of houses/structures of the surrounding villages as per DGMS standard.

- Propagation equation for the prediction of blast vibration has been established and is given as Equation 1. The permissible explosive weight per delay may be computed from the Equation to contain vibration within safe limits for distances of houses/structures concerned. For convenience, the recommended explosives weight per delay has been computed and is given in Table A3.
- The delay interval between the holes in a row should be 17 ms whereas between the rows, it should be 65 ms or more depending upon the number of rows and effective burden. If the numbers of rows are more than two, the delay interval between rows should be increased by 15% in successive rows.
- It is recommended that the existing Nonel initiation system should be continued in the blasting operations and Electronic initiation systems should be practiced on the benches near to the structures for more precise and accurate delay design. The sub-grade drilling should be 0.3 to 0.5 m for a blasthole depth of 6 to 7 m and should be initiated from the bottom of the hole.
- It is advisable to use blasting mate with sand bags in sensitive area to ensure any nonejection of flyrocks. For this Nonel as well as electronic system may be used as an initiation system.
- The recommended blast designs should be followed for day-to-day blasting operations for safe and efficient blasting operations. The blast designs given in Annexure as Figures A1-A2, will ensure the safety of the houses/structures, life of human beings and other property in the periphery of the mine.

Acknowledgements

The research team is thankful to M/s Prism Cement Limited for sponsoring the study. The sincere co-operation and help extended to the team by the following officials in completing the study successfully are thankfully acknowledged.

Shri S. K. Sinha,	Vice President
Shri Sanjay Singh Baghel,	Manager (Mines)
Shri Chandrakand pandey,	Asst. Manager
Shri Binod Giri,	Asst. Manager
Shri A. K. Baghel,	Blasting Foreman
Shri S. Singh,	Field Surveyor

The research team also expresses their gratitude to the inhabitants of Hinauti and Sijhata villages for their co-operation in blast vibration and air overpressure monitoring.

Table A1. Summary of blast performed during the period of study at Prism Cement Limestone mine, Prism Cement Limited, Satna (M.P.).

17

15.	4.	z .	12.	5 .	10.	9.	.8
26.12.16	26.12.16	26.12.16	25.12.16	24.12.16	24.12.16	24.12.16	24.12.16
15 No. Goyal Face	15 No. Goyal Face	15 No. Goyal Face	15 No. RPL	15 No. Goyal Face	15 No. Goyal Face	15 No. Goyal Face	15 No. RPL Site
45	21	28	84	30	21	20	40
115	115	115	115	115	115	115	115
6	ω	v	6	3.5- 4.5	2.5	5.5	6
2.5×3	3×4	3×4	3×3.5	3×3.5	3×3.5	3×3.5	3×3.5
2.4	2.6	ເມ	3.5	2.5 - 3	1.7	3.6	3.5
25	2.78	25	32	14.7 - 20	5.4	22	35
1125 (Solargel Cartridge & Solar Prime Booster)	58.4 (Solar Prime Booster)	710 * No ejectic (Booster Primex and SME * Good frag explosives of M/s IEPL Orica) * Unitronic	2678	603 Chocked face (Booster Primex and SME No ejection of flyroc explosives of M/s IEPL Orica) Good fragmentation Nonel (TLD – 17 mi DTH – 450 ms)	(Solargel Cartridge & Solar Prime Booster)	440 No ejectic (Booster Primex and SME Good frag explosives of M/s IEPL Orica) Initronic	explosives of M/s IEPL Orica) No ejection of flyrock. 1405 VOD Measurement. (Booster Primex and SME explosives of M/s IEPL Orica) No ejection of flyrock.
 No ejection of flyrock Excellent fragmentation Nonel (TLD – 17 ms, 42 ms, DTH – 450 ms) 	 No ejection of flyrock Nonel (TLD – 17 ms, 42 ms, DTH – 450 ms) 	 No ejection of flyrock Good fragmentation Unitronic 	 No ejection of flyrock Good fragmentation Unitronic 	 Chocked face No ejection of flyrock Good fragmentation Nonel (TLD – 17 ms, 42 ms, DTH – 450 ms) 	 No ejection of flyrock Good fragmentation Unitronic 	 Original No ejection of flyrock. Good fragmentation Unirronic 	 No ejection of flyrock. VOD Measurement. No ejection of flyrock.

	0. <u>20</u> r	+			N CT .C		N CI	-				3. ID NO				<u>ب</u>	2. /UD					-				No B	
	20 No. Pit	n:		SILE	IJ INO. KIPL		13 NO. RPL	זחת			reac	ID NO. GOYAI	-			Face	For E			race	English Providence	Cont			DIASI	IO	
	1670				058	010	30	0				440					1037				01	ING	round	detonated in	Explosives	Total	-
	75 (3×25)			(2×25)	50		30					22				(2×30.5)	19			(2×5.5)		Kg	delay	weight per	Explosives	Maximum	
 Back Side From Blast Face Back Side From Blast Face 	 Back Side From Blast Face Back Side From Blast Face 	Back Side From Blast Face	Back Side From Blast Face	➢ Back Side From Blast Face	➢ Back Side From Blast Face	Back Side From Blast Face	▶ Back Side From Blast Face	Back Side From Blast Face	➢ Back Side From Blast Face	➢ Back Side From Blast Face	> Back Side From Blast Face				instruments	Location of measuring											
150	100	200	150	100	50	100	50	250	200	150	100	50	200	150	125	100	50	200	150	100	50	[m]	blasting face	point from	measuring	Distance of	
25.6	30.4 27 1	2.55	3.49	7.78	22.1	22.1	33.9	2.40	2.63	3.88	6.75	21.0	4.33	4.95	10.0	13.9	18.7	1.88	2.35	5.54	22.7	[mm/s]	(PPV)	velocity	particle	Peck	
18.5	112	21	28	21.5	45.5	45.5	30.3	12.8	47.3	40.3	47.9	44	12.3	12.1	13.3	21.3	33.8	26.9	32.9	26.1	79.6	[Hz]		frequency	peck	Dominant	
122.6	131.5	115.9	115.7	122.9	125.8	125.8	127.8	116.9	112.6	118.8	119.8	136.1	121.3	122.9	121.2	123.3	129.8	121.5	122.3	122.5	130	[dB (L)]		•	pressure/noise	Air over-	

Table A2. Blast induced vibration monitored at different location in and around Prism Cement Limestone mine, Prism Cement Limited, (M.P.)

			1.5.	13				12.	5				П.	-	10.	10			У.					0.	0				7.
		Lace	Ecco	ISN's Carol				10 NO. KPL				Face	10 NO. GOYAI	Face	ID NO. GOYAI			race	15 No. Goyal				Sile	ID NO. KPL	12 VI DDI			Hinauti	New Pit 01.
			117	710				26/8	2000				603		113				440					1405					420
		(C7×7)	00	5			(3×31.6)	95				(2×22)	44		21				20				(2×35)	70					30
Kight Side From Blast Face	➤ Right Side From Blast Face	> Left Side From Blast Face	> Left Side From Blast Face	Back Side From Blast Face	Back Side From Blast Face	Back Side From Blast Face	➤ Back Side From Blast Face	Back Side From Blast Face	Back Side From Blast Face	Structure height (roof-3m)	> House of Sri Umesh Prasad	Back Side From Blast Face	Left Side From Blast Face	➢ Back Side From Blast Face	➢ Right Side From Blast Face	Back Side From Blast Face	Back Side From Blast Face	Right Side From Blast Face	Back Side From Blast Face	➢ Back Side From Blast Face	Left Side From Blast Face	➢ Back Side From Blast Face	Back Side From Blast Face	Left Side From Blast Face	(village Shankarji temple)	➤ Left Side From Blast Face	Left Side From Blast Face	Back Side From Blast Face	➢ Left Side From Blast Face
140	110	100	50	250	200	150	100	50	200	150	150	100	50	200	150	200	150	100	100	150	100	100	60	50	200		100	75	50
3.59	3.84	6.66	31.0	4.56	5.03	10.7	16.3	17.0	5.65	15.1	6.35	8.10	17.1	1.08	2.83	4.07	5.62	6.14	12.5	6.89	8.77	11.3	17.5	24.4	5.29		5.24	10.7	20.4
27.1	27.5	15	32	18.6	18.0	129	58.5	129	17.5	21.3	16.8	18	24.5	28.8	24.6	11.4	36.8	35.6	27.4	15.9	17.8	15.9	30.4	52.9	18.5		22	18.5	22.5
123.6	126.8	123.9	130.1	123.5	123.1	121.8	121.9	131	126.5	ı	128.9	130.6	131.4	110.2	125	116.3	120	133.4	122.3	128	123.9	127.8	128.8	127.8	122.6		134.8	132.5	135.1

	12			14.
Face	15 No Count		1 400	ID NO. Goyal
1120	1175			58.38
(3×25)	1			2.78
 Right Side From Blast Face Right Side From Blast Face Right Side From Blast Face 	Front Side From Blast Face	► Front Side From Blast Face	Back Side From Blast Face	▶ Back Side From Blast Face
100 120 130	200	140	100	70
11.6 11.0 9.0	0.73	1.84	2.71	2.83
34.8 69.1 22.8	21.3	28.8	20.6	21.8
137.8 132.7 132.2	116.	119	116	121

Table A3. Recommended explosives weight per delay to be detonated in a blasting round for the safety of houses/structures taking 10 mm/s (for the houses/structures not belonging to the Owner) and 15 mm/s (for the houses/structures belonging to the Owner) as safe limit of peak particle velocity for Prism Cement Limestone mine, Prism Cement Limited, Satna, (M. P).

Distance of structures from the blast face [m]	Maximum explosive weight to b detonated in a delay [kg]					
	10 mm/s	15 mm/s				
50	12	19				
75	27	42				
100	49	75				
125	76	118				
150	110	170				
175	149	231				
200	195	302				
225	247	382				
250	305	471				
275	369	570				
300	439	678				

Table A4. Predicted peak particle velocity level at various distance due to detonation of explosive weight per delay of 10, 20, 30 & 50 kg at Prism Cement Limestone mine, Prism Cement Limited, Satna, (M.P).

Distance of structures from the blast face	Predicted peak particle velocity levels [mm/s]								
[m]	10 kg	20 kg	30 kg	50 kg					
50	9.9	13.2	16.6	22.1					
75	6.3	8.4	10.5	14.0					
100	4.6	6.1	7.6	10.1					
125	3.5	4.7	5.9	7.9					
150	2.9	3.8	4.8	6.4					
175	2.4	3.2	4.1	5.4					
200	2.1	2.8	3.5	4.6					
225	1.8	2.4	3.1	4.1					
250	1.6	2.2	2.7	3.6					
275	1.5	1.9	2.4	3.2					
300	1.3	1.8	2.2	2.9					

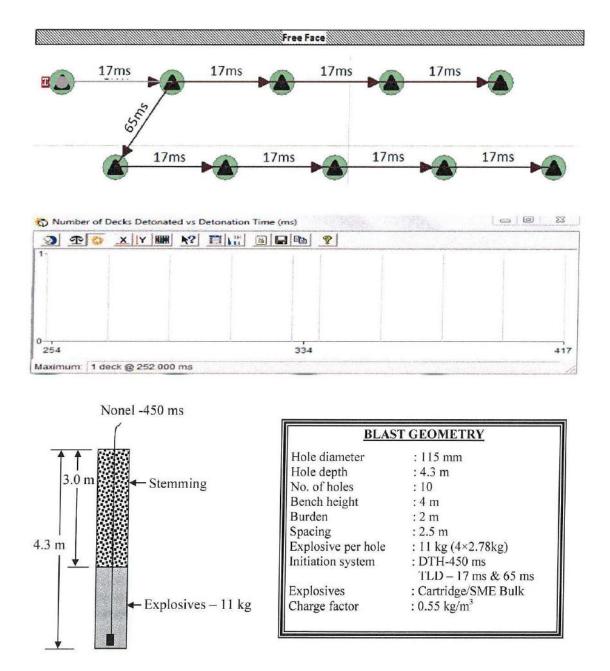
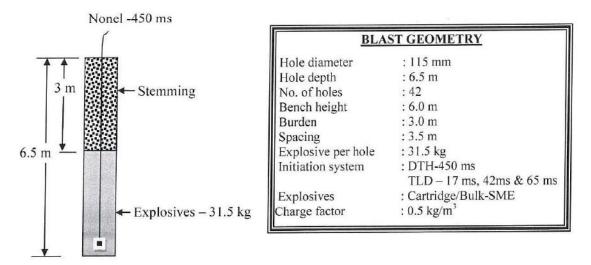
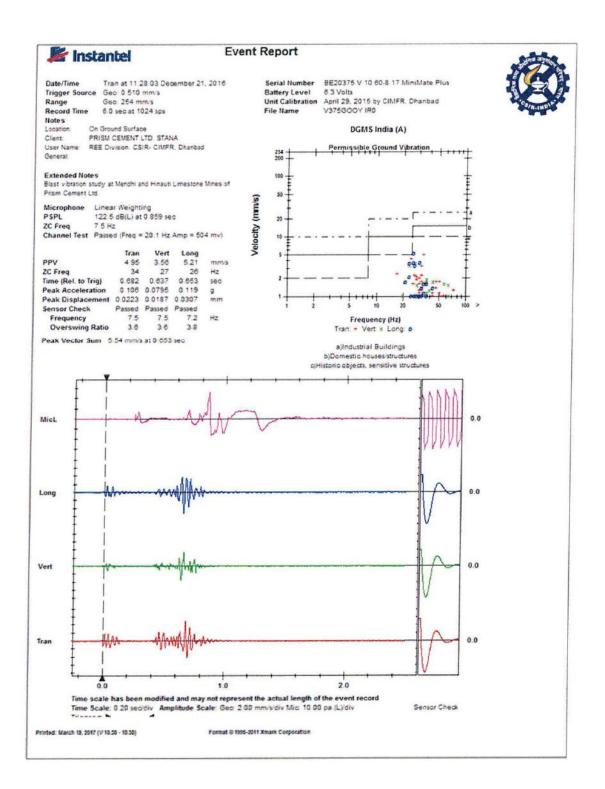
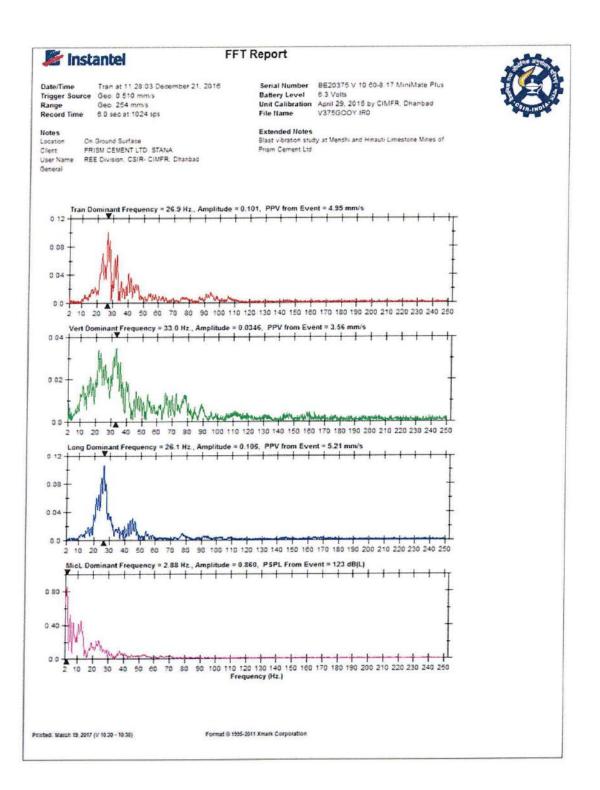
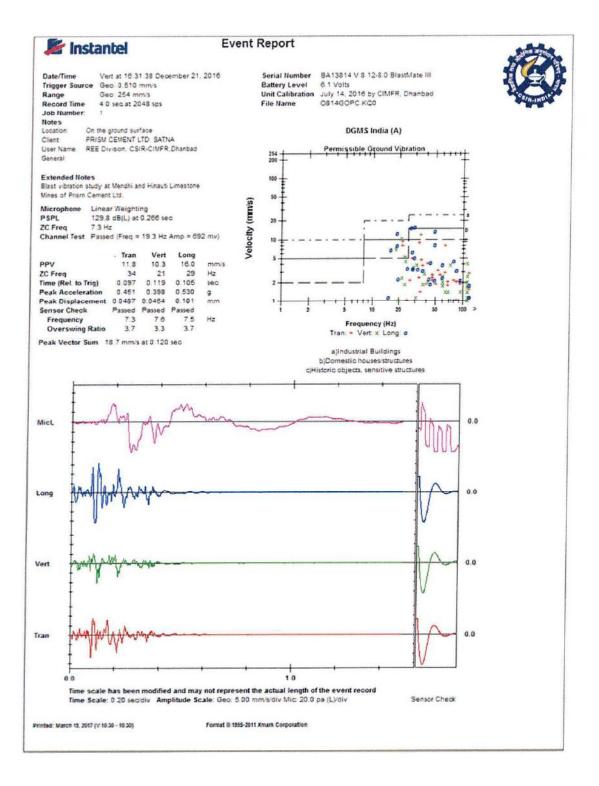
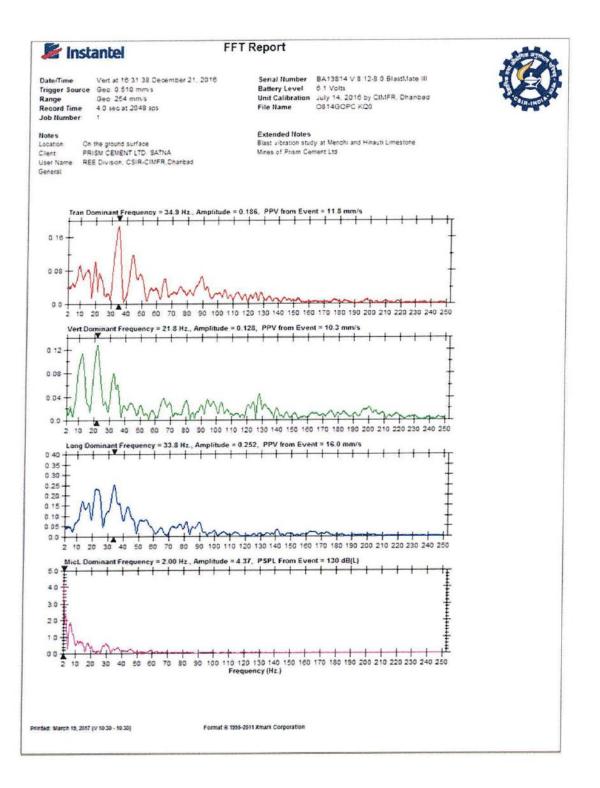
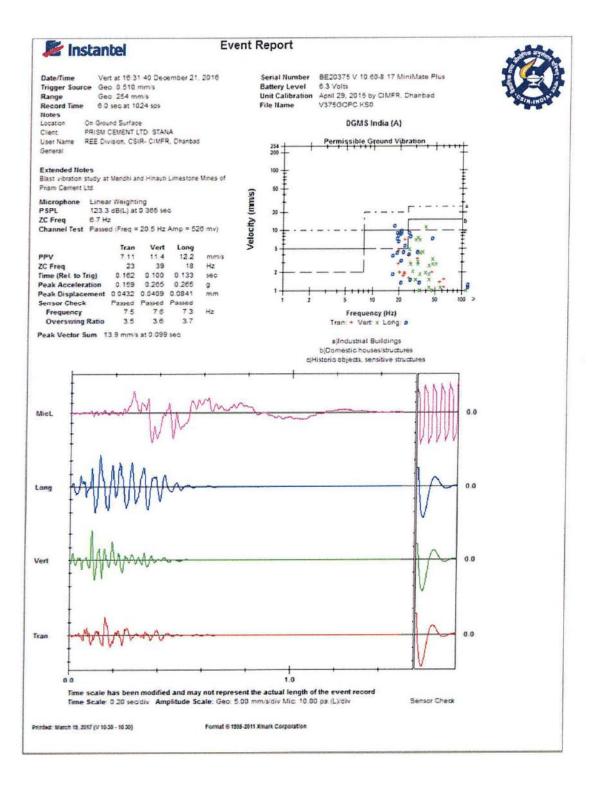
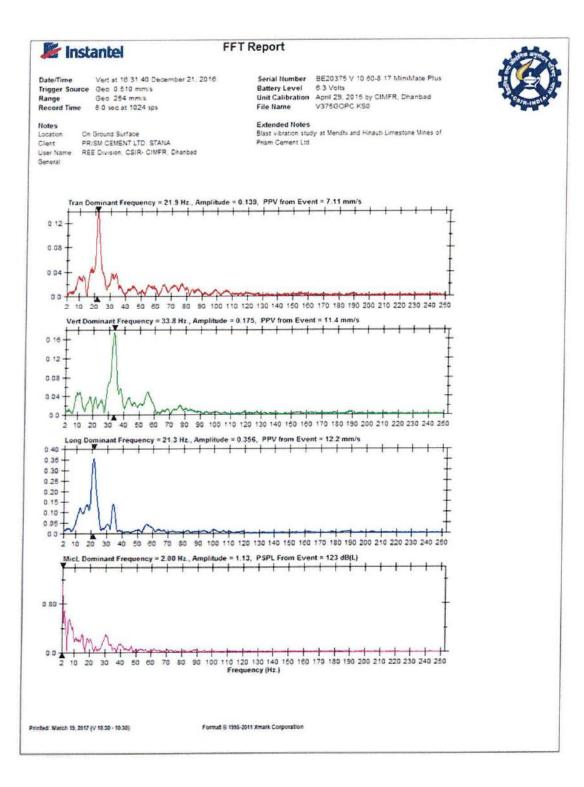
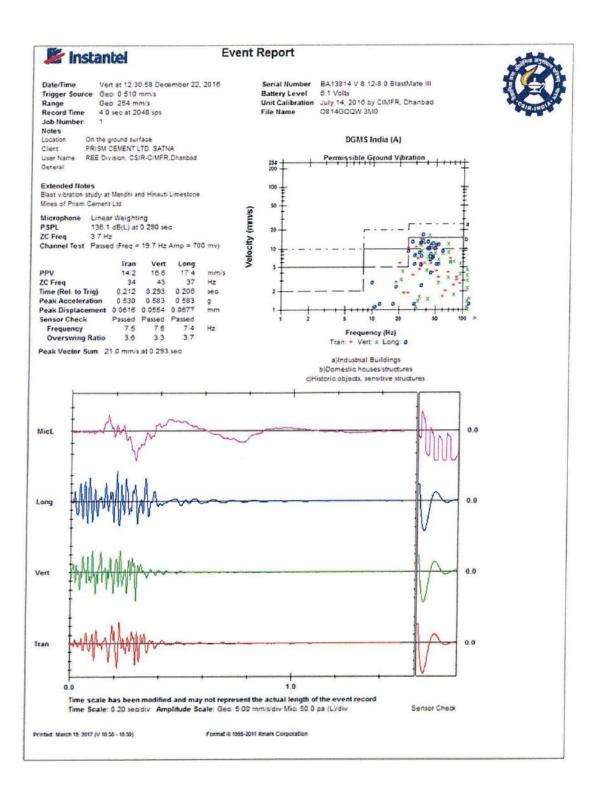


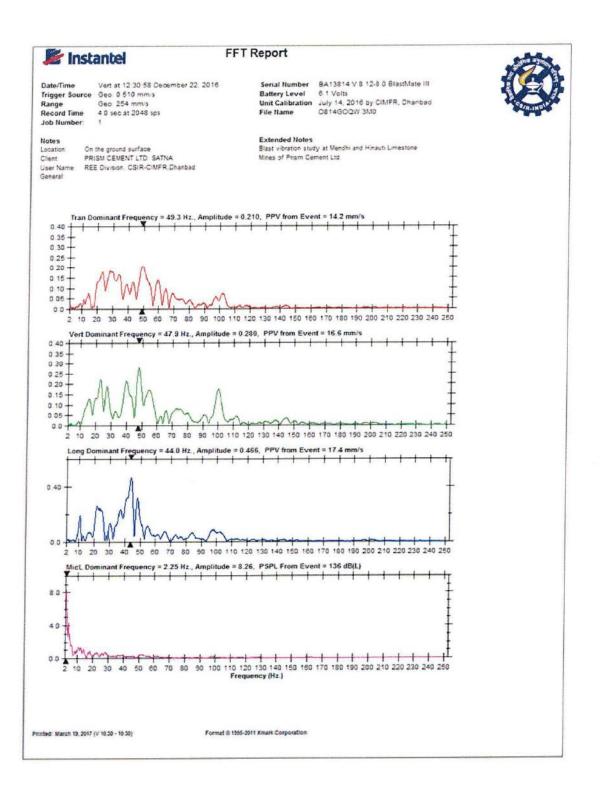

Figure A1. Recommended blast design and charging pattern of holes for 4 m benches of Prism Cement Limestone mine when blasting is to be conducted at or beyond 50m.

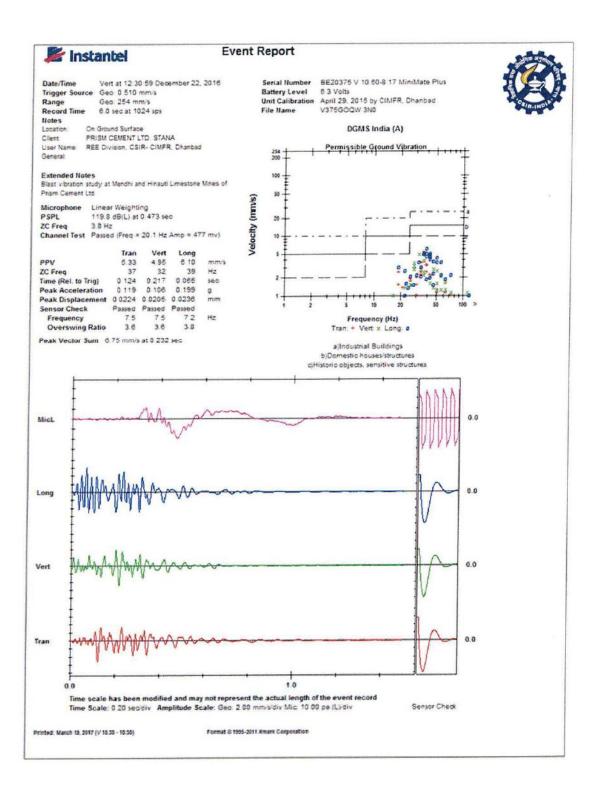






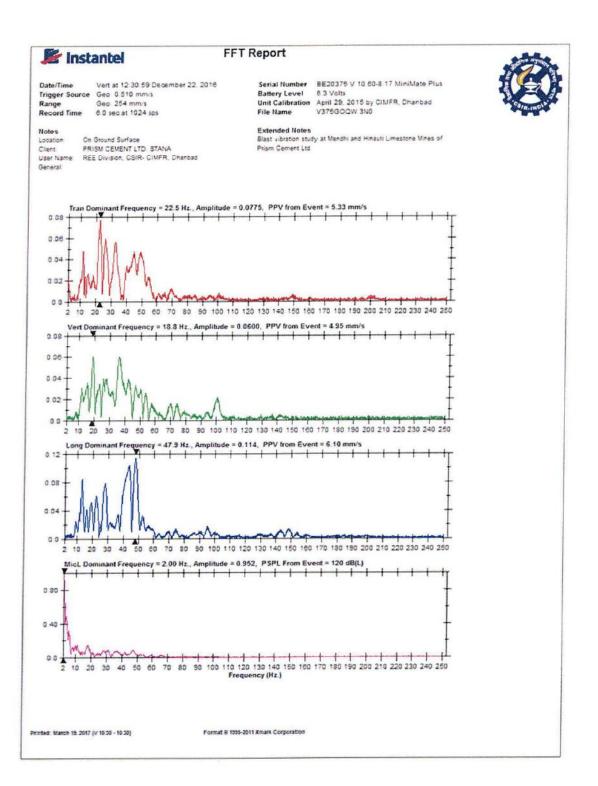

Figure A2. Recommended blast design and charging pattern of holes for 6.0 m benches of Prism Cement Limestone mine when blasting is to be conducted at or beyond 100 m.

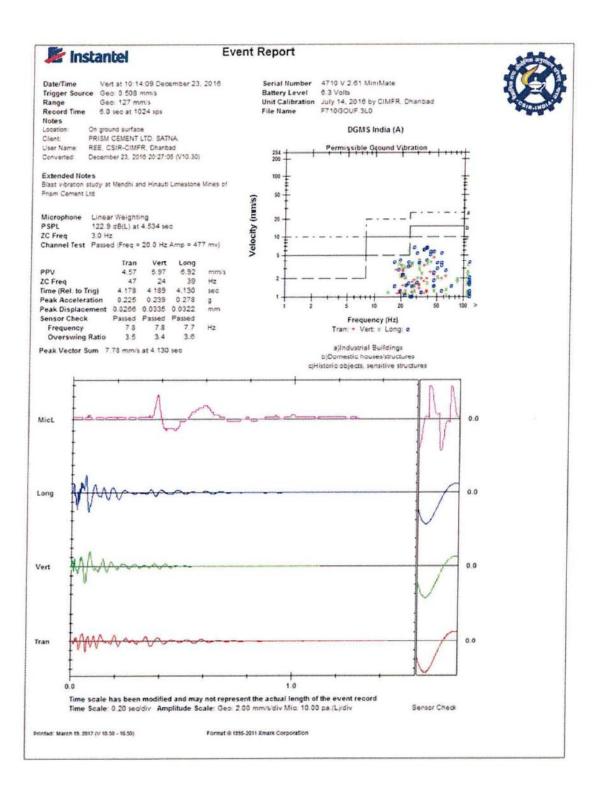


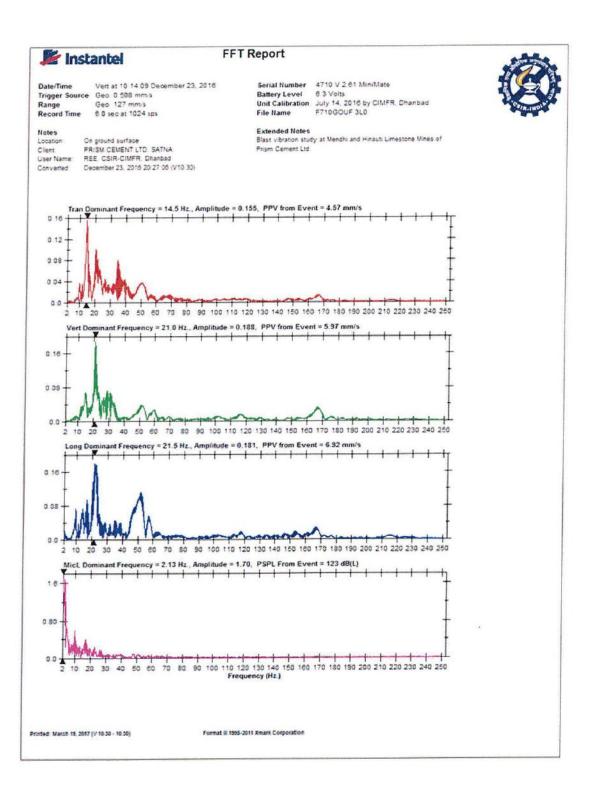


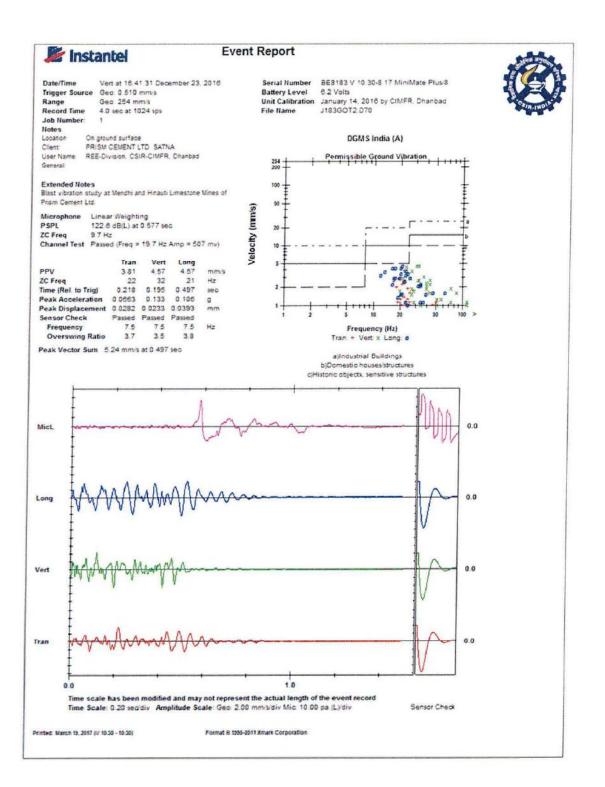


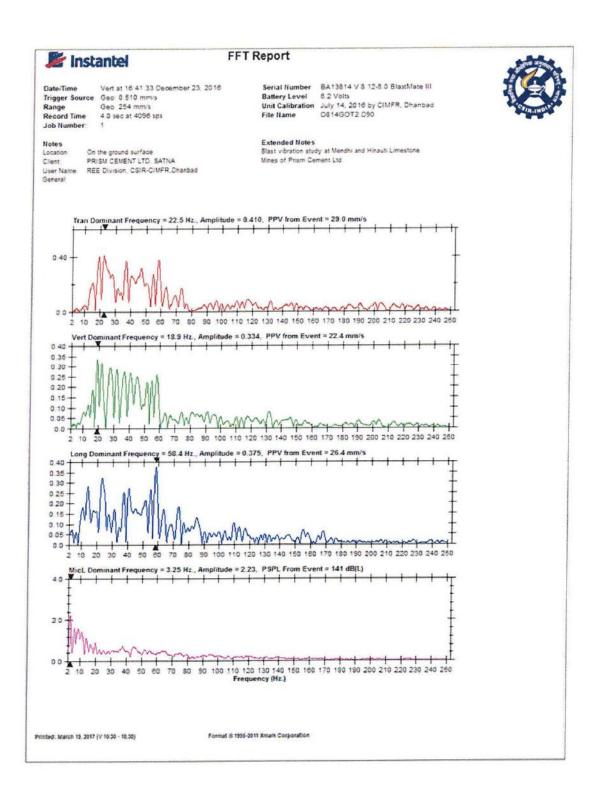


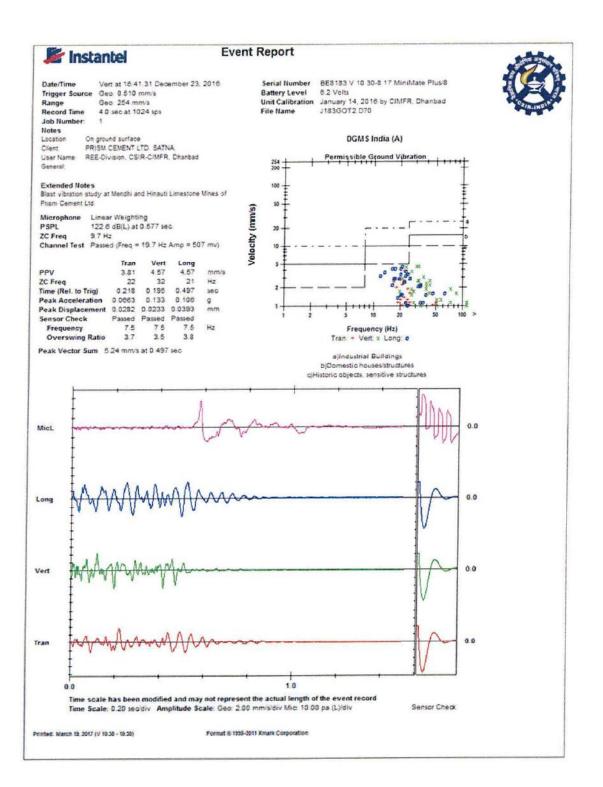


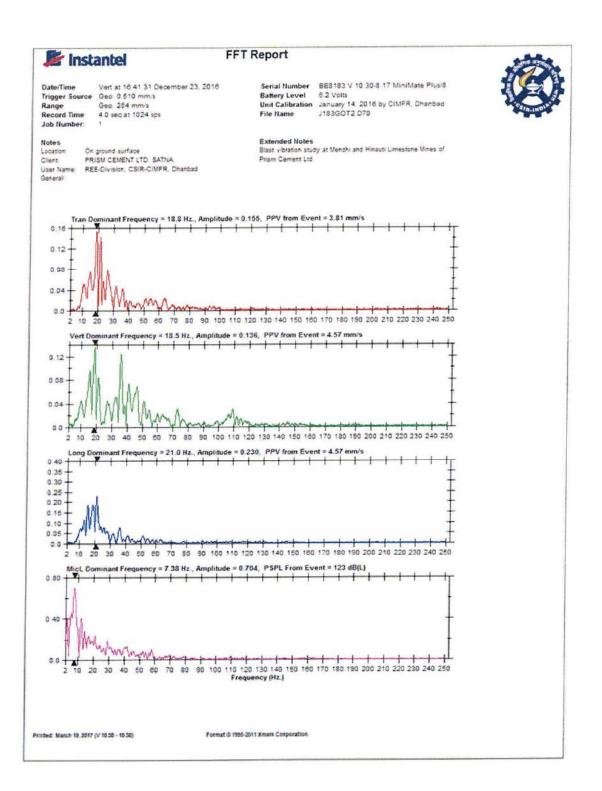


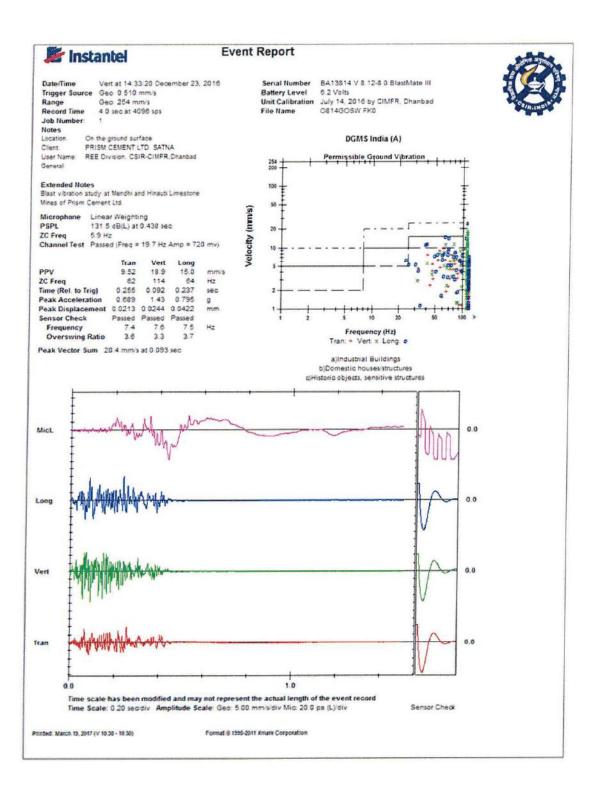


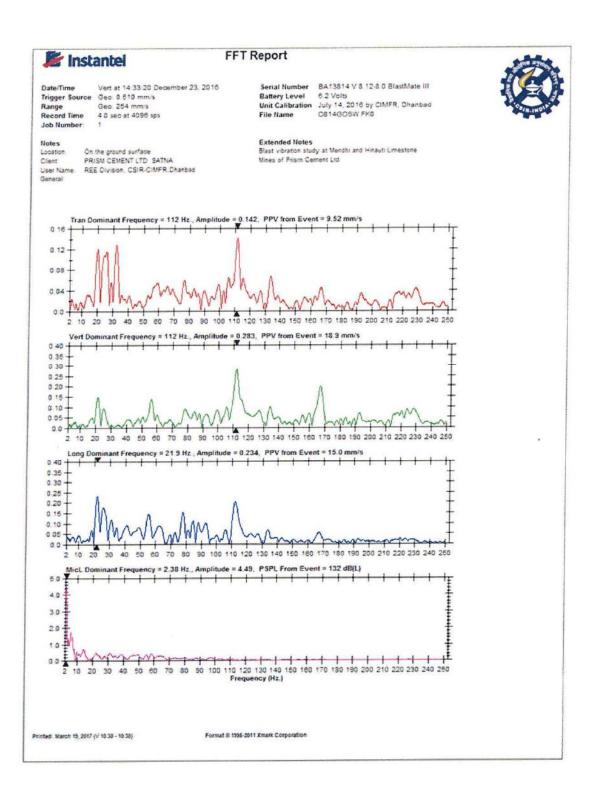


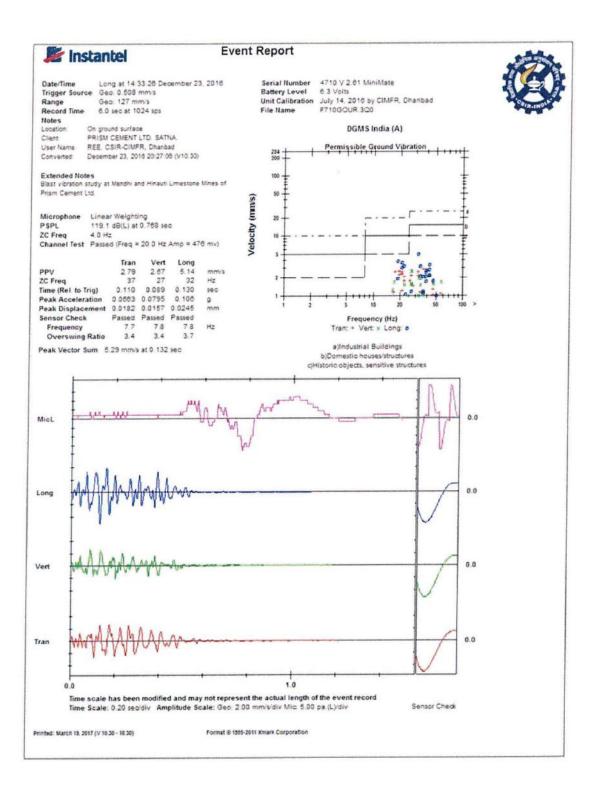


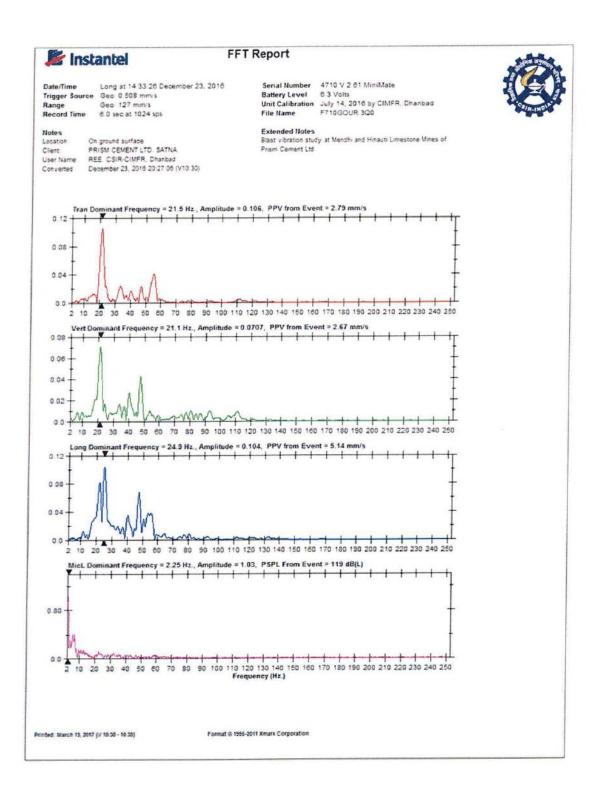


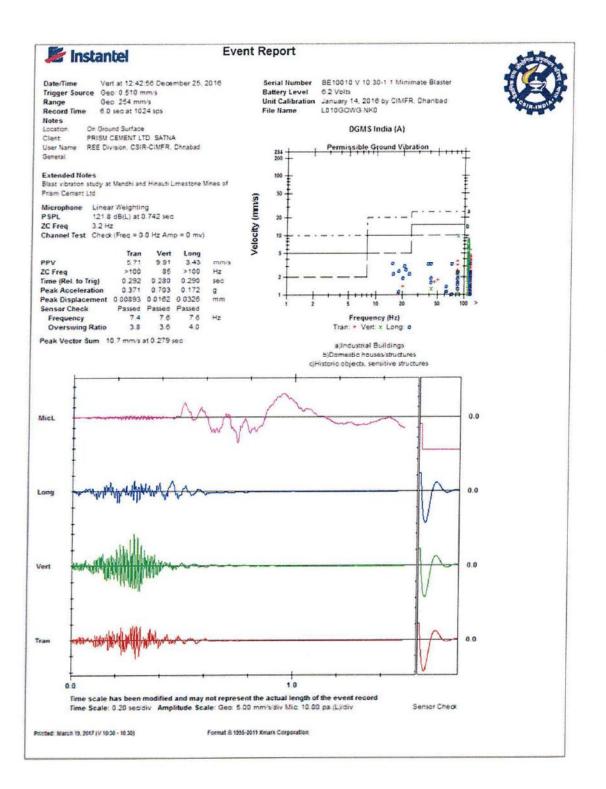


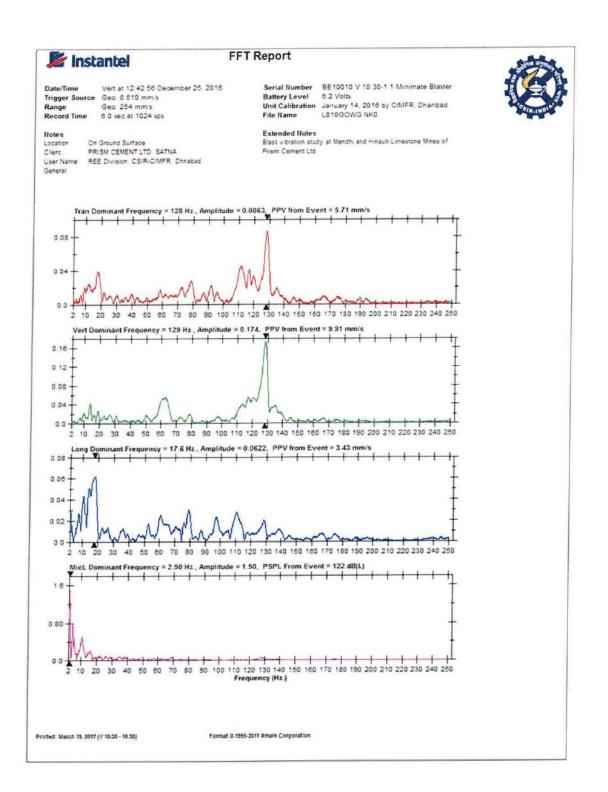


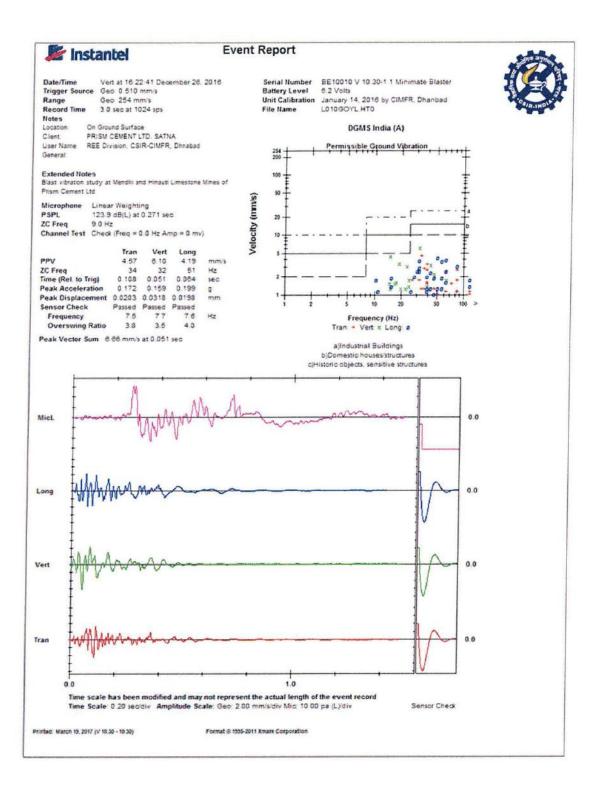


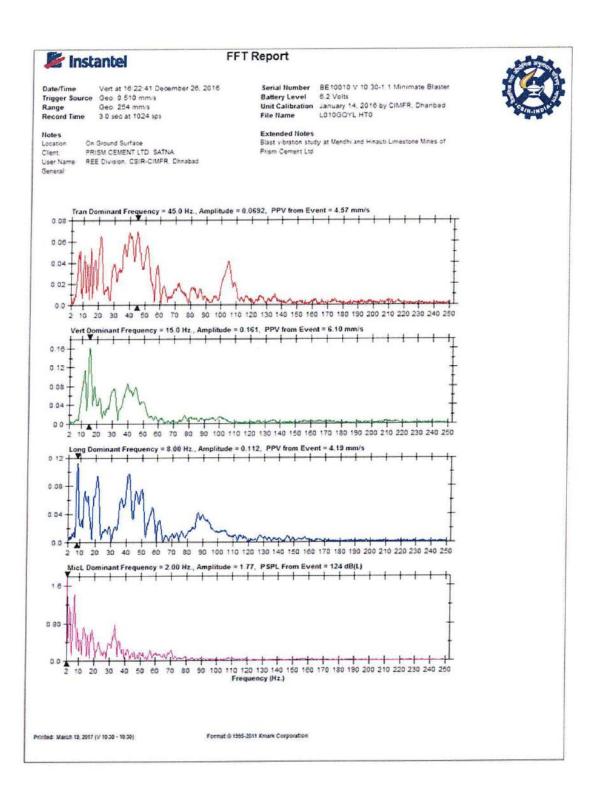


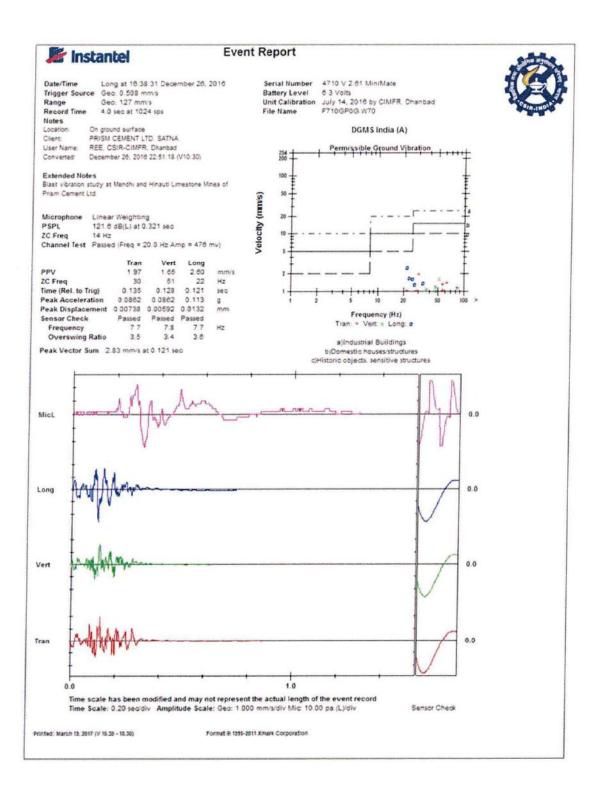


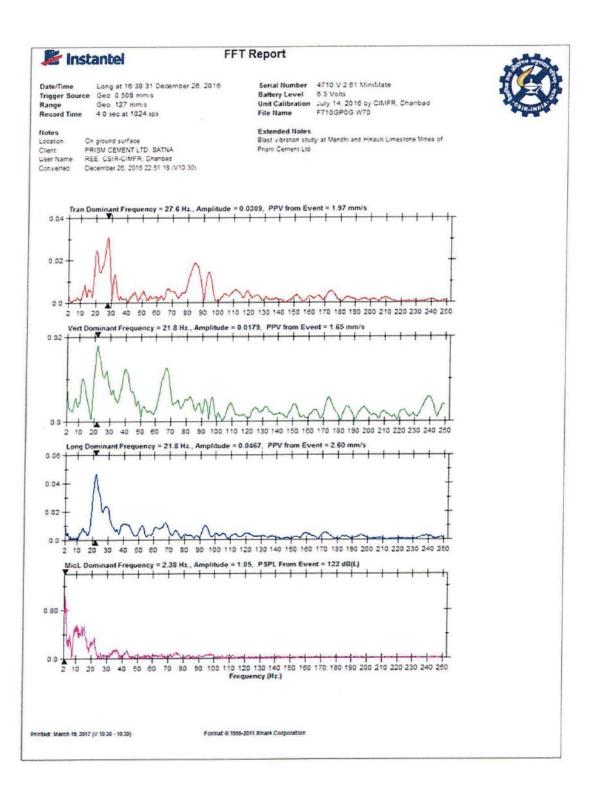


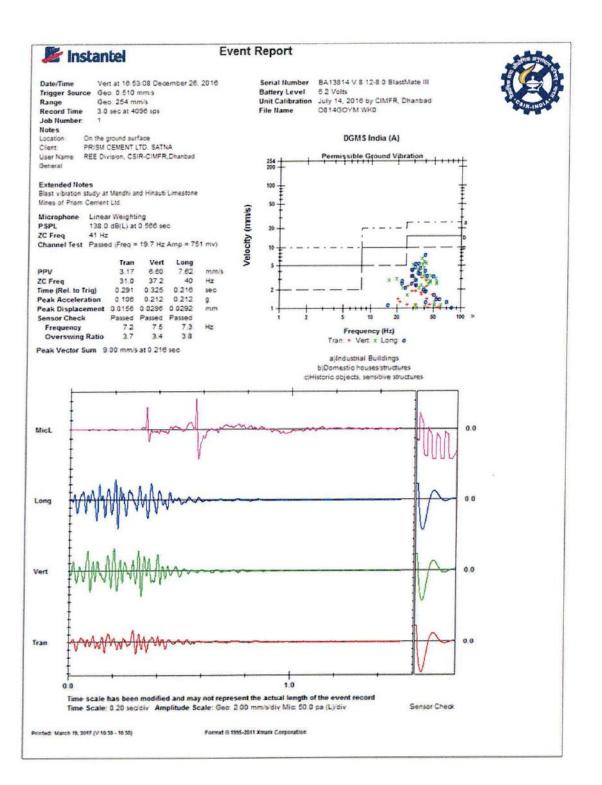


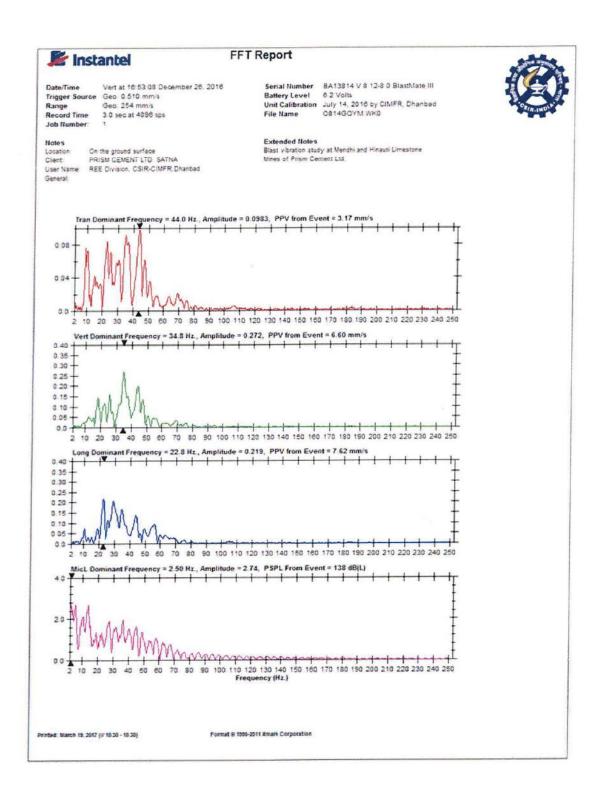












ANNEXURE - 9

MIN/0701/990628 03.02.2000

The Joint Director(S) Ministry Of Environment & Forests (MOEF), Regional Office, Western Region E-3/240 Arera Colony, Bhopal-462016(M.P)

Dear Sir,

-National Science of the science of

Sub: Compliance Report - Sijhata-Hinouti-Limestone Mine of M/s. Prism Cement Ltd.

Ref: Letter - No. 11015/37/96/1A II(M) dated 20/12/99 of MOEF, New Delhi Your office letter no. 3-1/97(Env)/1359 dated 5/7/99.

We kindly acknowledge the above mentioned letters. We regret very much for not sending the compliance reports in time. We assure you, sir, we will be sending the same in time in future.

We hereby mention our clarifications pointiwise as raised by you:

The garland drains have been done all around the dumping sites, which restrict erosion the settling of silt around the faces.

a) Monitoring of Quality of Effluent:

In mines there is no generation of any effluent water. However the Sewage Water generated from the residential colony (combined for plant & mines) is being treated in colony premises and is being monitored regularly as per guidelines of MPPCB.

The rainwater accumulated in the lower benches of the working areas, is being pumped out and carried through pipeline to the reservoirs (settling tanks). The reservoir is in two blocks having cumulative water holding capacities of about 1.5 lakhs cub. mtrs. We find water in the reservoir till end of January or max 2nd week of February.

This water is being used sometimes for plantation and dust suppression on the hauling roads.

(b) Monitoring of RPM:

The monitoring of RPM is presently is not being monitored, as there is no norms mentioned in the MPPCB consent letter. At present we are regularly monitoring SPM, SO_2 , NOx in Mines. RPM is not being monitored as on date. If you feel it is required we will arrange to carry out the same. We request for your guidelines for RPM monitoring.

....21-

c) Submission of Analysis Report in respect of Noise pollution:

We have submitted a copy of the comprehensive, EIA and EMP (Post commissioning) for the area, vide our letter no. MIN0703/990369 dated 15/9/99, in person, which is duly acknowledged by your Regional Office, Bhopal on 16/9/99.

However, we are furnishing copies of the same for your ready reference and records.

d) Submission of analysis – report on the monitoring data:

e)

We are furnishing here with the monthly Ambient Air Quality Monitoring reports till date.

Construction of settling tanks and toe-drains leading to it for arresting siltation of surface water.

We do not have an open drainage system. The pumped out water is being carried through pipelines and released in the reservoir. The reservoirs consist of two blocks of a cumulative water holding capacity of 1.5 lakhs cub. Mtrs. The water is not discharged from reservoir. Hence all the silt will be deposited within the reservoir.

f) Submission of annual action plan for socio economic development:

We are herewith furnishing a note on the various social (welfare) economic measures carried out by Prism cement. We have enclosed herewith the Socio Economic Action Plan for your kind perusal.

g) Establishment of Environment Management Cell:

We have already established Environmental Management Cell, members of which are as below :

Mr. M.P. Rai	***	Vice President (Works)
Mr. U.K. Das	Har	Sr. Jt. General Manager (Mines)
Mr. A.K. Shrivastava	-	Asst.Gen.Manager
Mr. V.V. Kulkarni	-	Manager (Geology).
Mr. D.K. Singh	-	Asst. Manager (Pollution Control)
Mr. S.P. Singh	-	Horticulturist.

...3/-

:: 2 ::

h) Regular submission of reports for every 6 months about environmental compliance to Regional office:

We regret for not sending regularly the reports as mentioned above. The same will be complied in future.

:: 3 ::

Hope all these points are in order and we assure you that to the best of our efforts, we shall continue to comply with various provisions of the Act.

Thanking you,

Yours faithfully, For PRISM CEMENT LIMITED

U.K. DAS 7/ 7/ 8 Sr. Jt. General Manager (Mines)

Encl: as above.

CC: Additional Director, MOEF – For necessary information and records. CGO Complex, Lodhi Road New Delhi – 110 003

PS: We have complied all the points referred in your letter dated 20.12.99 and sent all the relevant details to Regional office, Bhopal

03.02.2000

S.No	Particular	Details	Amo	ount
1.	Village road repair – leading Eastern Block		Rs.	200
2.	Soil filling and levelling at Sijhata school (29.1.99)	150 soil trips x 3 = 450 cu. Mtr x Rs.45	Rs.	20250
3.	Soil filling at Hinouti Mandir 24.3.99	50 trips = 50 x 3 = 150 cu.mtr. x Rs.45	Rs.	6750
4	Soil filling at Sijahata village – Road side (3/3/999)	50 trips = 50 x 3 =150 cu.mtr. x Rs. 45	Rs.	6750
5.	Soil filling at Ramvan for Basanth Panchami (Jan- 2000)	50 trips =50x3 = 150 cu. Mtr x Rs. 45	Rs.	6750
6.	Hinouti village road bridge,near village for water management (culvert built)		Rs.	25000
7.	Village road leading to Pithepur (Magazine) (99-2000)		Rs.	150000
8.	Soil supplied to Rampur – (Police Station)			
9.	Jailor Rampur			
10.	Hinouti Road – From Baghicha to Hinouti village	Rs. 60000 labour wages + Rs. 100000 material cost.	Rs.	180000
11.	Drains in village for proper water management in the Patel Tola of Hinouti village habitation.		Rs.	50000
2.	Other roads leading to Hinouti village	250 labour x Rs. 70 = 17500 + 2000 trips material x 3 = 6000 cu.mtr = Rs. 270000	Rs.	287500
3.	1300- 1400 trips of soil will be given to the villagers during 2000-2001	1350 x 3 = 4050 cu.mtr. x Rs. 45	Rs.	200000
2 N	Medical facilities			
	250 patients x Rs. 7 x Rs. 12		Rs.	21000
	Mobile clinic treatment in villages @ Rs. 60/- per patient (inclusive of van charges)	15000 x 12	Rs.	180000

And the Road Street Boothing

SOCIO- ECONOMIC DEVELOPMENT ACTION PLAN (WORKSHEET)

·" - .

Annexure -3

SI.No	Particulars	Incurred
		2000-2001
1	General Development of Villages –	200000
	for 4 villages namely Hinouti, Sijhata,	
	Mankahari & Bamhori @ Rs. 50000/- each	
	per annum to vill. Panchayats	
2	Welfare to needy villagers - exgratia	300000
3	Repairs incurred on village roads within	320000
	5 km range villages víz. Hinouti,Sijhata,	
	mankahari,Bamhouri,Rampur etc.	
	·	
Ą	Soll filling & levelling the school and	
	panchayat buildings areas & playground.	
	Sijahata School area and approach road	241989
·.	In Hinouti village, Mankahari village, Ramvan, etc.	
. 5	Medical facilities:	
	(i) Patients being treated at medical centre	
	on an average about 250/ month or 1500/ annum.	696000
<u></u>		
	(ii)Patients being treated at villages through mobile	21000
	clinic on an average about 21 per day	:
6	Contribution to sports activities	15000
	Total Rs.In Lakhs	<u>1793989</u> 17·93

SOCIO- ECONOMIC DEVELOPMENT ACTION PLAN

Prism cement is giving preference to the local villagers and land sellers suitable employment based on their qualification and capabilities.

In addition to the employment, indirect employment is also generated/ provided, like deploying trucks, tippers, oil tankers, compressors etc. purchased by local villagers have been hired for internal transportation of materials.

Also employment is provided for the development of horticulature and green belt.

No. of persons employed (workers category) during 1998-99 - 592. (Including plant)

U.K.Das

Guigen

Gen.Manager (Mines)

ECOMEN LABORATORIES PVT. LTD.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi (Valid Upto 02.01.19)

FORMAT NO. ECO/QS/FORMAT/07 TEST REPORT NO:ECO LAB/WW/767/11/18 TEST REPORT ISSUE DATE: 05.12.2018

TEST REPORT OF WASTE WATER*

Name of the Company	: M/s. Prism Cement Limited
Address of the Company	: Village Mankahari,
	Tehsil Rampur Baghelan
	Distt.Satna (M.P.)
Sampling Method	: APIIA/ IS: 3025
Sample Collected by	: Mr.Maan Singh
Sample Quantity	: As per requirement.
Date of Sampling	: 24.11.2018
Date of Receiving	: 26.11.2018
Date of Analysis	: 26.11.2018 to 05.12.2018
Source of Sample	: Mine Workshop after separate Treated Water
Sample ID Code	: ELW - 8747

SL No.	TESTS	PROTOCOL.	RESULT	Range of Testing / Limits of Detection 2-12 5.0-1000 5.0-600 5-10000	G.S.R 1265(E) 6.5-9.0 <100.0 - 30.0
1	pH	APHA, 23 rd Ed. 2017, 4500H+ A+B	7.37		
2	Total Suspended Solid as TSS (mg/l)	APHA, 23 rd Ed. 2017, 2540-D	15.6 BDL 5.3		
3	Oil & Grease as O & G (mg/1)	APHA, 23rd Ed. 2017, 5520 A+B+D			
4	Biochemical Oxygen Demand as BOD (mg/l) 3days at 27°C	APHA, 23rd Ed. 2017, 5210 A+B			
5	Chemical Oxygen Demand as COD (mg/l)	APHA, 23 rd Ed. 2017, 5220 A+C	28.0	5-50000	
6.	Fecal Coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, A + E	Absent	-	<1000

*The result are related only to item tested. BDL = Below Detection Limit

Authorized signatory 1.td.

Ecomen Laboratoria PVt/ Ltd. Flat No & 2nd Floor, Ant Chamber-V Sector-H, Aligani, Lucknow-226024 Ph.-2746282, Fax:2745726

Quality Manager